These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 21919512)
1. Classification and source determination of medium petroleum distillates by chemometric and artificial neural networks: a self organizing feature approach. Mat-Desa WN; Ismail D; NicDaeid N Anal Chem; 2011 Oct; 83(20):7745-54. PubMed ID: 21919512 [TBL] [Abstract][Full Text] [Related]
2. Application of unsupervised chemometric analysis and self-organizing feature map (SOFM) for the classification of lighter fuels. Desa WN; Nic Daéid N; Ismail D; Savage K Anal Chem; 2010 Aug; 82(15):6395-400. PubMed ID: 20597464 [TBL] [Abstract][Full Text] [Related]
3. Chemometric analysis of gas chromatography with flame ionisation detection chromatograms: a novel method for classification of petroleum products. Nielsen NJ; Ballabio D; Tomasi G; Todeschini R; Christensen JH J Chromatogr A; 2012 May; 1238():121-7. PubMed ID: 22503620 [TBL] [Abstract][Full Text] [Related]
4. Assessment of Self-Organizing Map artificial neural networks for the classification of sediment quality. Alvarez-Guerra M; González-Piñuela C; Andrés A; Galán B; Viguri JR Environ Int; 2008 Aug; 34(6):782-90. PubMed ID: 18313753 [TBL] [Abstract][Full Text] [Related]
5. Differentiation of types of crude oils in polluted soil samples by headspace-fast gas chromatography-mass spectrometry. Pavón JL; Peña AG; Pinto CG; Cordero BM J Chromatogr A; 2006 Dec; 1137(1):101-9. PubMed ID: 17056051 [TBL] [Abstract][Full Text] [Related]
6. Classification of weathered petroleum oils by multi-way analysis of gas chromatography-mass spectrometry data using PARAFAC2 parallel factor analysis. Ebrahimi D; Li J; Hibbert DB J Chromatogr A; 2007 Sep; 1166(1-2):163-70. PubMed ID: 17727864 [TBL] [Abstract][Full Text] [Related]
7. Classification of high-speed gas chromatography-mass spectrometry data by principal component analysis coupled with piecewise alignment and feature selection. Watson NE; Vanwingerden MM; Pierce KM; Wright BW; Synovec RE J Chromatogr A; 2006 Sep; 1129(1):111-8. PubMed ID: 16860329 [TBL] [Abstract][Full Text] [Related]
8. Use of unsupervised and supervised artificial neural networks for the identification of lactic acid bacteria on the basis of SDS-PAGE patterns of whole cell proteins. Piraino P; Ricciardi A; Salzano G; Zotta T; Parente E J Microbiol Methods; 2006 Aug; 66(2):336-46. PubMed ID: 16480784 [TBL] [Abstract][Full Text] [Related]
9. Characterization of humic substances of different origin by means of mass spectrometry and neural networks. Peña-Méndez EM; Novotná K; Gajdosová D; González V; Havel J Chemosphere; 2007 Aug; 68(11):2047-53. PubMed ID: 17420037 [TBL] [Abstract][Full Text] [Related]
10. Forensic differentiation of biogenic organic compounds from petroleum hydrocarbons in biogenic and petrogenic compounds cross-contaminated soils and sediments. Wang Z; Yang C; Kelly-Hooper F; Hollebone BP; Peng X; Brown CE; Landriault M; Sun J; Yang Z J Chromatogr A; 2009 Feb; 1216(7):1174-91. PubMed ID: 19131067 [TBL] [Abstract][Full Text] [Related]
11. Combination of statistical methods and Fourier transform ion cyclotron resonance mass spectrometry for more comprehensive, molecular-level interpretations of petroleum samples. Hur M; Yeo I; Park E; Kim YH; Yoo J; Kim E; No MH; Koh J; Kim S Anal Chem; 2010 Jan; 82(1):211-8. PubMed ID: 19968292 [TBL] [Abstract][Full Text] [Related]
12. Chemical fingerprinting of petroleum biomarkers in biota samples using retention-time locking chromatography and multivariate analysis. Bartolomé L; Deusto M; Etxebarria N; Navarro P; Usobiaga A; Zuloaga O J Chromatogr A; 2007 Jul; 1157(1-2):369-75. PubMed ID: 17544434 [TBL] [Abstract][Full Text] [Related]
13. Petroleum hydrocarbon contamination in surface sediments of Beiluohe Basins, China. Shi H; Zhang L; Yue L; Zheng G Bull Environ Contam Toxicol; 2008 Oct; 81(4):416-21. PubMed ID: 18751936 [TBL] [Abstract][Full Text] [Related]
14. Fingerprinting and source identification of an oil spill in China Bohai Sea by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry coupled with multi-statistical analyses. Sun P; Bao M; Li G; Wang X; Zhao Y; Zhou Q; Cao L J Chromatogr A; 2009 Jan; 1216(5):830-6. PubMed ID: 19118832 [TBL] [Abstract][Full Text] [Related]
15. Identification of petroleum hydrocarbons using a reduced number of PAHs selected by Procrustes rotation. Fernández-Varela R; Andrade JM; Muniategui S; Prada D; Ramírez-Villalobos F Mar Pollut Bull; 2010 Apr; 60(4):526-35. PubMed ID: 20005532 [TBL] [Abstract][Full Text] [Related]
16. Source apportionment of ambient non-methane hydrocarbons in Hong Kong: application of a principal component analysis/absolute principal component scores (PCA/APCS) receptor model. Guo H; Wang T; Louie PK Environ Pollut; 2004 Jun; 129(3):489-98. PubMed ID: 15016469 [TBL] [Abstract][Full Text] [Related]
17. A Tucker model based approach for analysis of complex oil biodegradation data. Tomasi G; Christensen JH J Chromatogr A; 2009 Nov; 1216(45):7865-72. PubMed ID: 19767011 [TBL] [Abstract][Full Text] [Related]
18. Application of Kohonen Neural Networks in classification of biologically active compounds. Kirew DB; Chretien JR; Bernard P; Ros F SAR QSAR Environ Res; 1998; 8(1-2):93-107. PubMed ID: 9517011 [TBL] [Abstract][Full Text] [Related]
19. Characteristics of bicyclic sesquiterpanes in crude oils and petroleum products. Yang C; Wang Z; Hollebone BP; Brown CE; Landriault M J Chromatogr A; 2009 May; 1216(20):4475-84. PubMed ID: 19321169 [TBL] [Abstract][Full Text] [Related]
20. The development of a method for the qualitative and quantitative determination of petroleum hydrocarbon components using thin-layer chromatography with flame ionization detection. Wang S; Guo G; Yan Z; Lu G; Wang Q; Li F J Chromatogr A; 2010 Jan; 1217(3):368-74. PubMed ID: 19945114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]