These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21919608)

  • 1. Use of mathematical models to understand anticancer drug delivery and its effect on solid tumors.
    Li C; Krishnan J; Stebbing J; Xu XY
    Pharmacogenomics; 2011 Sep; 12(9):1337-48. PubMed ID: 21919608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modeling analysis of intratumoral disposition of anticancer agents and drug delivery systems.
    Popilski H; Stepensky D
    Expert Opin Drug Metab Toxicol; 2015 May; 11(5):767-84. PubMed ID: 25813659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical modeling and optimization of drug delivery from intratumorally injected microspheres.
    Tzafriri AR; Lerner EI; Flashner-Barak M; Hinchcliffe M; Ratner E; Parnas H
    Clin Cancer Res; 2005 Jan; 11(2 Pt 1):826-34. PubMed ID: 15701873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical modeling of drug delivery.
    Siepmann J; Siepmann F
    Int J Pharm; 2008 Dec; 364(2):328-43. PubMed ID: 18822362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational modelling of drug delivery to solid tumour: Understanding the interplay between chemotherapeutics and biological system for optimised delivery systems.
    Zhan W; Alamer M; Xu XY
    Adv Drug Deliv Rev; 2018 Jul; 132():81-103. PubMed ID: 30059703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of diffusion controlled drug delivery.
    Siepmann J; Siepmann F
    J Control Release; 2012 Jul; 161(2):351-62. PubMed ID: 22019555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finding the optimal balance: challenges of improving conventional cancer chemotherapy using suitable combinations with nano-sized drug delivery systems.
    Kratz F; Warnecke A
    J Control Release; 2012 Dec; 164(2):221-35. PubMed ID: 22705248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical models to describe iontophoretic transport in vitro and in vivo and the effect of current application on the skin barrier.
    Gratieri T; Kalia YN
    Adv Drug Deliv Rev; 2013 Feb; 65(2):315-29. PubMed ID: 22626977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local controlled drug delivery to the brain: mathematical modeling of the underlying mass transport mechanisms.
    Siepmann J; Siepmann F; Florence AT
    Int J Pharm; 2006 May; 314(2):101-19. PubMed ID: 16647231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug development for cancer chemoprevention: focus on molecular targets.
    Johnson KA; Brown PH
    Semin Oncol; 2010 Aug; 37(4):345-58. PubMed ID: 20816505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mathematical model of doxorubicin penetration through multicellular layers.
    Evans CJ; Phillips RM; Jones PF; Loadman PM; Sleeman BD; Twelves CJ; Smye SW
    J Theor Biol; 2009 Apr; 257(4):598-608. PubMed ID: 19183560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of the anticancer drugs doxorubicin, mitoxantrone and topotecan in tumors and normal tissues.
    Patel KJ; Trédan O; Tannock IF
    Cancer Chemother Pharmacol; 2013 Jul; 72(1):127-38. PubMed ID: 23680920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical modeling of drug release from lipid dosage forms.
    Siepmann J; Siepmann F
    Int J Pharm; 2011 Oct; 418(1):42-53. PubMed ID: 21802501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical modeling and simulation of drug release from microspheres: Implications to drug delivery systems.
    Arifin DY; Lee LY; Wang CH
    Adv Drug Deliv Rev; 2006 Nov; 58(12-13):1274-325. PubMed ID: 17097189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3-D tumor model for in vitro evaluation of anticancer drugs.
    Horning JL; Sahoo SK; Vijayaraghavalu S; Dimitrijevic S; Vasir JK; Jain TK; Panda AK; Labhasetwar V
    Mol Pharm; 2008; 5(5):849-62. PubMed ID: 18680382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delivery of anticancer drugs.
    Zee-Cheng RK; Cheng CC
    Methods Find Exp Clin Pharmacol; 1989; 11(7-8):439-529. PubMed ID: 2689812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticles conjugated with cisplatin/doxorubicin/capecitabine lower the chemoresistance of hepatocellular carcinoma-derived cancer cells.
    Tomuleasa C; Soritau O; Orza A; Dudea M; Petrushev B; Mosteanu O; Susman S; Florea A; Pall E; Aldea M; Kacso G; Cristea V; Berindan-Neagoe I; Irimie A
    J Gastrointestin Liver Dis; 2012 Jun; 21(2):187-96. PubMed ID: 22720309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies.
    Chauhan VP; Stylianopoulos T; Boucher Y; Jain RK
    Annu Rev Chem Biomol Eng; 2011; 2():281-98. PubMed ID: 22432620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical models in drug delivery: how modeling has shaped the way we design new drug delivery systems.
    Peppas NA; Narasimhan B
    J Control Release; 2014 Sep; 190():75-81. PubMed ID: 24998939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticles for delivery of chemotherapeutic agents to tumors.
    Vijayaraghavalu S; Raghavan D; Labhasetwar V
    Curr Opin Investig Drugs; 2007 Jun; 8(6):477-84. PubMed ID: 17621878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.