These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 21919608)

  • 81. Computational modelling of drug delivery to solid tumour: Understanding the interplay between chemotherapeutics and biological system for optimised delivery systems.
    Zhan W; Alamer M; Xu XY
    Adv Drug Deliv Rev; 2018 Jul; 132():81-103. PubMed ID: 30059703
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Modeling of diffusion controlled drug delivery.
    Siepmann J; Siepmann F
    J Control Release; 2012 Jul; 161(2):351-62. PubMed ID: 22019555
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Finding the optimal balance: challenges of improving conventional cancer chemotherapy using suitable combinations with nano-sized drug delivery systems.
    Kratz F; Warnecke A
    J Control Release; 2012 Dec; 164(2):221-35. PubMed ID: 22705248
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Mathematical models to describe iontophoretic transport in vitro and in vivo and the effect of current application on the skin barrier.
    Gratieri T; Kalia YN
    Adv Drug Deliv Rev; 2013 Feb; 65(2):315-29. PubMed ID: 22626977
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Local controlled drug delivery to the brain: mathematical modeling of the underlying mass transport mechanisms.
    Siepmann J; Siepmann F; Florence AT
    Int J Pharm; 2006 May; 314(2):101-19. PubMed ID: 16647231
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Drug development for cancer chemoprevention: focus on molecular targets.
    Johnson KA; Brown PH
    Semin Oncol; 2010 Aug; 37(4):345-58. PubMed ID: 20816505
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Mathematical modeling of drug release from lipid dosage forms.
    Siepmann J; Siepmann F
    Int J Pharm; 2011 Oct; 418(1):42-53. PubMed ID: 21802501
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Mathematical modeling and simulation of drug release from microspheres: Implications to drug delivery systems.
    Arifin DY; Lee LY; Wang CH
    Adv Drug Deliv Rev; 2006 Nov; 58(12-13):1274-325. PubMed ID: 17097189
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Delivery of anticancer drugs.
    Zee-Cheng RK; Cheng CC
    Methods Find Exp Clin Pharmacol; 1989; 11(7-8):439-529. PubMed ID: 2689812
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies.
    Chauhan VP; Stylianopoulos T; Boucher Y; Jain RK
    Annu Rev Chem Biomol Eng; 2011; 2():281-98. PubMed ID: 22432620
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Mathematical models in drug delivery: how modeling has shaped the way we design new drug delivery systems.
    Peppas NA; Narasimhan B
    J Control Release; 2014 Sep; 190():75-81. PubMed ID: 24998939
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Nanoparticles for delivery of chemotherapeutic agents to tumors.
    Vijayaraghavalu S; Raghavan D; Labhasetwar V
    Curr Opin Investig Drugs; 2007 Jun; 8(6):477-84. PubMed ID: 17621878
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy.
    Parhi P; Mohanty C; Sahoo SK
    Drug Discov Today; 2012 Sep; 17(17-18):1044-52. PubMed ID: 22652342
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Pharmacokinetic profiles of doxorubicin in combination with taxanes.
    Holmes FA; Rowinsky EK
    Semin Oncol; 2001 Aug; 28(4 Suppl 12):8-14. PubMed ID: 11552225
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues.
    Kim M; Gillies RJ; Rejniak KA
    Front Oncol; 2013 Nov; 3():278. PubMed ID: 24303366
    [TBL] [Abstract][Full Text] [Related]  

  • 96. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Functionalized carbon nanotubes for anticancer drug delivery.
    Lay CL; Liu J; Liu Y
    Expert Rev Med Devices; 2011 Sep; 8(5):561-6. PubMed ID: 22026621
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Mathematical modeling of vesicle drug delivery systems 2: targeted vesicle interactions with cells, tumors, and the body.
    Ying CT; Wang J; Lamm RJ; Kamei DT
    J Lab Autom; 2013 Feb; 18(1):46-62. PubMed ID: 22989771
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Mathematical modeling of polymer erosion: consequences for drug delivery.
    Sackett CK; Narasimhan B
    Int J Pharm; 2011 Oct; 418(1):104-14. PubMed ID: 21130849
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Mathematical modeling of drug dissolution.
    Siepmann J; Siepmann F
    Int J Pharm; 2013 Aug; 453(1):12-24. PubMed ID: 23618956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.