These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 21919783)

  • 21. Coherent ongoing subthreshold state of a cortical neural network regulated by slow- and fast-spiking interneurons.
    Hoshino O
    Network; 2006 Dec; 17(4):351-71. PubMed ID: 17162460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vigabatrin induces tonic inhibition via GABA transporter reversal without increasing vesicular GABA release.
    Wu Y; Wang W; Richerson GB
    J Neurophysiol; 2003 Apr; 89(4):2021-34. PubMed ID: 12612025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Allosteric modulation of alpha 7 nicotinic receptors selectively depolarizes hippocampal interneurons, enhancing spontaneous GABAergic transmission.
    Arnaiz-Cot JJ; González JC; Sobrado M; Baldelli P; Carbone E; Gandía L; García AG; Hernández-Guijo JM
    Eur J Neurosci; 2008 Mar; 27(5):1097-110. PubMed ID: 18312591
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synaptic activation of GABA(B) receptors regulates neuronal network activity and entrainment.
    Brown JT; Davies CH; Randall AD
    Eur J Neurosci; 2007 May; 25(10):2982-90. PubMed ID: 17561812
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insufficient augmentation of ambient GABA responsible for age-related cognitive deficit.
    Fujiwara H; Zheng M; Miyamoto A; Hoshino O
    Cogn Process; 2011 May; 12(2):151-9. PubMed ID: 21046192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Disruption of GABA(A) receptors on GABAergic interneurons leads to increased oscillatory power in the olfactory bulb network.
    Nusser Z; Kay LM; Laurent G; Homanics GE; Mody I
    J Neurophysiol; 2001 Dec; 86(6):2823-33. PubMed ID: 11731539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy substrate availability as a determinant of neuronal resting potential, GABA signaling and spontaneous network activity in the neonatal cortex in vitro.
    Holmgren CD; Mukhtarov M; Malkov AE; Popova IY; Bregestovski P; Zilberter Y
    J Neurochem; 2010 Feb; 112(4):900-12. PubMed ID: 19943846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spike-timing-dependent plasticity leads to gamma band responses in a neural network.
    Fründ I; Ohl FW; Herrmann CS
    Biol Cybern; 2009 Sep; 101(3):227-40. PubMed ID: 19789891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Whisker experience modulates long-term depression in neocortical γ-aminobutyric acidergic interneurons in barrel cortex.
    Sun QQ; Zhang Z
    J Neurosci Res; 2011 Jan; 89(1):73-85. PubMed ID: 21046566
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatiotemporal regulation of GABA concentration in extracellular space by gliotransmission crucial for extrasynaptic receptor-mediated improvement of sensory tuning performance in schizophrenia.
    Hoshino O; Kameno R; Kubo J; Watanabe K
    J Comput Neurosci; 2020 Aug; 48(3):317-332. PubMed ID: 32761409
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GABA(A) receptor diversity and pharmacology.
    Möhler H
    Cell Tissue Res; 2006 Nov; 326(2):505-16. PubMed ID: 16937111
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glycine-gated chloride channels depress synaptic transmission in rat hippocampus.
    Song W; Chattipakorn SC; McMahon LL
    J Neurophysiol; 2006 Apr; 95(4):2366-79. PubMed ID: 16381810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus.
    Saraga F; Balena T; Wolansky T; Dickson CT; Woodin MA
    Neuroscience; 2008 Jul; 155(1):64-75. PubMed ID: 18562122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use-dependent shift from inhibitory to excitatory GABAA receptor action in SP-O interneurons in the rat hippocampal CA3 area.
    Lamsa K; Taira T
    J Neurophysiol; 2003 Sep; 90(3):1983-95. PubMed ID: 12750426
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors.
    Farrant M; Nusser Z
    Nat Rev Neurosci; 2005 Mar; 6(3):215-29. PubMed ID: 15738957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the role of receptor-receptor interactions and volume transmission in learning and memory.
    Guidolin D; Fuxe K; Neri G; Nussdorfer GG; Agnati LF
    Brain Res Rev; 2007 Aug; 55(1):119-33. PubMed ID: 17408566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons.
    Cobb SR; Buhl EH; Halasy K; Paulsen O; Somogyi P
    Nature; 1995 Nov; 378(6552):75-8. PubMed ID: 7477292
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glutamate transporter EAAT4 in Purkinje cells controls intersynaptic diffusion of climbing fiber transmitter mediating inhibition of GABA release from interneurons.
    Satake S; Song SY; Konishi S; Imoto K
    Eur J Neurosci; 2010 Dec; 32(11):1843-53. PubMed ID: 21070388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NKCC1 activity modulates formation of functional inhibitory synapses in cultured neocortical neurons.
    Nakanishi K; Yamada J; Takayama C; Oohira A; Fukuda A
    Synapse; 2007 Mar; 61(3):138-49. PubMed ID: 17146765
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reducing variability in motor cortex activity at a resting state by extracellular GABA for reliable perceptual decision-making.
    Hoshino O; Kameno R; Watanabe K
    J Comput Neurosci; 2019 Dec; 47(2-3):191-204. PubMed ID: 31720999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.