These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 21920041)

  • 21. Primary ciliary dyskinesia: a review.
    Carlén B; Stenram U
    Ultrastruct Pathol; 2005; 29(3-4):217-20. PubMed ID: 16036877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Situs inversus and ciliary abnormalities. What is the connection?
    Afzelius BA
    Int J Dev Biol; 1995 Oct; 39(5):839-44. PubMed ID: 8645568
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purinergically induced membrane fluidization in ciliary cells: characterization and control by calcium and membrane potential.
    Alfahel E; Korngreen A; Parola AH; Priel Z
    Biophys J; 1996 Feb; 70(2):1045-53. PubMed ID: 8789123
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ciliary membrane vesicles of paramecium contain the voltage-sensitive calcium channel.
    Thiele J; Schultz JE
    Proc Natl Acad Sci U S A; 1981 Jun; 78(6):3688-91. PubMed ID: 6267602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BK-Type K(Ca) channels in two parasympathetic cell types: differences in kinetic properties and developmental expression.
    Cameron JS; Dryer SE
    J Neurophysiol; 2000 Dec; 84(6):2767-76. PubMed ID: 11110807
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dopamine receptors reveal an essential role of IFT-B, KIF17, and Rab23 in delivering specific receptors to primary cilia.
    Leaf A; Von Zastrow M
    Elife; 2015 Jul; 4():. PubMed ID: 26182404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ionic mechanisms mediating oscillatory membrane potentials in wide-field retinal amacrine cells.
    Vigh J; Solessio E; Morgans CW; Lasater EM
    J Neurophysiol; 2003 Jul; 90(1):431-43. PubMed ID: 12649310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visualization of calcium transients controlling orientation of ciliary beat.
    Tamm SL; Terasaki M
    J Cell Biol; 1994 Jun; 125(5):1127-35. PubMed ID: 8195294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ca2+-activated K+ currents regulate odor adaptation by modulating spike encoding of olfactory receptor cells.
    Kawai F
    Biophys J; 2002 Apr; 82(4):2005-15. PubMed ID: 11916858
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of serotonin on ciliary beating and intracellular calcium concentration in identified populations of embryonic ciliary cells.
    Doran SA; Koss R; Tran CH; Christopher KJ; Gallin WJ; Goldberg JI
    J Exp Biol; 2004 Mar; 207(Pt 8):1415-29. PubMed ID: 15010492
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient mucociliary transport relies on efficient regulation of ciliary beating.
    Braiman A; Priel Z
    Respir Physiol Neurobiol; 2008 Nov; 163(1-3):202-7. PubMed ID: 18586580
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A two-cilia model for vertebrate left-right axis specification.
    Tabin CJ; Vogan KJ
    Genes Dev; 2003 Jan; 17(1):1-6. PubMed ID: 12514094
    [No Abstract]   [Full Text] [Related]  

  • 33. Suppression of ciliary movements by a hypertonic stress in the newt olfactory receptor neuron.
    Wakazono Y; Sakurai T; Terakawa S
    Am J Physiol Cell Physiol; 2017 Oct; 313(4):C371-C379. PubMed ID: 28684540
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of ciliary beating frequency under voltage clamp control of the membrane.
    Machemer H; de Peyer JE
    Prog Clin Biol Res; 1982; 80():205-10. PubMed ID: 6808519
    [No Abstract]   [Full Text] [Related]  

  • 35. Regulation of ciliary adenylate cyclase by Ca2+ in Paramecium.
    Gustin MC; Nelson DL
    Biochem J; 1987 Sep; 246(2):337-45. PubMed ID: 2891352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Motion of An Inv Nodal Cilium: a Realistic Model Revealing Dynein-Driven Ciliary Motion with Microtubule Mislocalization.
    Yu Y; Shinohara K; Xu H; Li Z; Nishida T; Hamada H; Xu Y; Zhou J; Shao D; Li X; Chen D
    Cell Physiol Biochem; 2018; 51(6):2843-2857. PubMed ID: 30562762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of mammalian ciliary motility: Insights from primary ciliary dyskinesia genetics.
    Lee L
    Gene; 2011 Mar; 473(2):57-66. PubMed ID: 21111794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Primary ciliary dyskinesia: ciliary activity.
    van der Baan S; Veerman AJ; Wulffraat N; Bezemer PD; Feenstra L
    Acta Otolaryngol; 1986; 102(3-4):274-81. PubMed ID: 3490735
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Paramecium swimming and ciliary beating patterns: a study on four RNA interference mutations.
    Funfak A; Fisch C; Abdel Motaal HT; Diener J; Combettes L; Baroud CN; Dupuis-Williams P
    Integr Biol (Camb); 2015 Jan; 7(1):90-100. PubMed ID: 25383612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alcohol stimulates ciliary motility of isolated airway axonemes through a nitric oxide, cyclase, and cyclic nucleotide-dependent kinase mechanism.
    Sisson JH; Pavlik JA; Wyatt TA
    Alcohol Clin Exp Res; 2009 Apr; 33(4):610-6. PubMed ID: 19183138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.