BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 21920441)

  • 1. Stride-time variability and sensorimotor cortical activation during walking.
    Kurz MJ; Wilson TW; Arpin DJ
    Neuroimage; 2012 Jan; 59(2):1602-7. PubMed ID: 21920441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical control of normal gait and precision stepping: an fNIRS study.
    Koenraadt KL; Roelofsen EG; Duysens J; Keijsers NL
    Neuroimage; 2014 Jan; 85 Pt 1():415-22. PubMed ID: 23631980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study.
    Suzuki M; Miyai I; Ono T; Kubota K
    Neuroimage; 2008 Jan; 39(2):600-7. PubMed ID: 17950626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study.
    Suzuki M; Miyai I; Ono T; Oda I; Konishi I; Kochiyama T; Kubota K
    Neuroimage; 2004 Nov; 23(3):1020-6. PubMed ID: 15528102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stride-to-stride variability while enumerating animal names among healthy young adults: result of stride velocity or effect of attention-demanding task?
    Dubost V; Annweiler C; Aminian K; Najafi B; Herrmann FR; Beauchet O
    Gait Posture; 2008 Jan; 27(1):138-43. PubMed ID: 17467275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stride-time variability is related to sensorimotor cortical activation during forward and backward walking.
    Groff BR; Antonellis P; Schmid KK; Knarr BA; Stergiou N
    Neurosci Lett; 2019 Jan; 692():150-158. PubMed ID: 30367957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrocortical activity is coupled to gait cycle phase during treadmill walking.
    Gwin JT; Gramann K; Makeig S; Ferris DP
    Neuroimage; 2011 Jan; 54(2):1289-96. PubMed ID: 20832484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional near-infrared spectroscopy study on primary motor and sensory cortex response to clenching.
    Shibusawa M; Takeda T; Nakajima K; Ishigami K; Sakatani K
    Neurosci Lett; 2009 Jan; 449(2):98-102. PubMed ID: 18977413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between dual-task related changes in stride velocity and stride time variability in healthy older adults.
    Dubost V; Kressig RW; Gonthier R; Herrmann FR; Aminian K; Najafi B; Beauchet O
    Hum Mov Sci; 2006 Jun; 25(3):372-82. PubMed ID: 16714067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An fNIRS exploratory investigation of the cortical activity during gait in children with spastic diplegic cerebral palsy.
    Kurz MJ; Wilson TW; Arpin DJ
    Brain Dev; 2014 Nov; 36(10):870-7. PubMed ID: 24508407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical mapping of gait in humans: a near-infrared spectroscopic topography study.
    Miyai I; Tanabe HC; Sase I; Eda H; Oda I; Konishi I; Tsunazawa Y; Suzuki T; Yanagida T; Kubota K
    Neuroimage; 2001 Nov; 14(5):1186-92. PubMed ID: 11697950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water immersion to the femur level affects cerebral cortical activity in humans: functional near-infrared spectroscopy study.
    Sato D; Onishi H; Yamashiro K; Iwabe T; Shimoyama Y; Maruyama A
    Brain Topogr; 2012 Apr; 25(2):220-7. PubMed ID: 22193361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait variability among healthy adults: low and high stride-to-stride variability are both a reflection of gait stability.
    Beauchet O; Allali G; Annweiler C; Bridenbaugh S; Assal F; Kressig RW; Herrmann FR
    Gerontology; 2009; 55(6):702-6. PubMed ID: 19713694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of treadmill walking on the stride interval dynamics of human gait.
    Chang MD; Shaikh S; Chau T
    Gait Posture; 2009 Nov; 30(4):431-5. PubMed ID: 19656682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variability of lower extremity joint kinematics during backward walking in a virtual environment.
    Katsavelis D; Mukherjee M; Decker L; Stergiou N
    Nonlinear Dynamics Psychol Life Sci; 2010 Apr; 14(2):165-78. PubMed ID: 20346261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging of human supraspinal locomotor and postural control in fMRI.
    Zwergal A; Linn J; Xiong G; Brandt T; Strupp M; Jahn K
    Neurobiol Aging; 2012 Jun; 33(6):1073-84. PubMed ID: 21051105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related differences in spatiotemporal markers of gait stability during dual task walking.
    Hollman JH; Kovash FM; Kubik JJ; Linbo RA
    Gait Posture; 2007 Jun; 26(1):113-9. PubMed ID: 16959488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability of the long-range power-law correlations obtained from the bilateral stride intervals in asymptomatic volunteers whilst treadmill walking.
    Pierrynowski MR; Gross A; Miles M; Galea V; McLaughlin L; McPhee C
    Gait Posture; 2005 Aug; 22(1):46-50. PubMed ID: 15996591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of treadmill walking on the stride interval dynamics of children.
    Fairley JA; Sejdić E; Chau T
    Hum Mov Sci; 2010 Dec; 29(6):987-98. PubMed ID: 20817323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.