BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 21920446)

  • 1. Structural basis of 14-3-3 protein functions.
    Obsil T; Obsilova V
    Semin Cell Dev Biol; 2011 Sep; 22(7):663-72. PubMed ID: 21920446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-translational modification of 14-3-3 isoforms and regulation of cellular function.
    Aitken A
    Semin Cell Dev Biol; 2011 Sep; 22(7):673-80. PubMed ID: 21864699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exposed loop domains of complexed 14-3-3 proteins contribute to structural diversity and functional specificity.
    Sehnke PC; Laughner B; Cardasis H; Powell D; Ferl RJ
    Plant Physiol; 2006 Feb; 140(2):647-60. PubMed ID: 16407442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms.
    Gardino AK; Smerdon SJ; Yaffe MB
    Semin Cancer Biol; 2006 Jun; 16(3):173-82. PubMed ID: 16678437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of protein disorder in the 14-3-3 interaction network.
    Bustos DM
    Mol Biosyst; 2012 Jan; 8(1):178-84. PubMed ID: 21947246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for protein-protein interactions in the 14-3-3 protein family.
    Yang X; Lee WH; Sobott F; Papagrigoriou E; Robinson CV; Grossmann JG; Sundström M; Doyle DA; Elkins JM
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17237-42. PubMed ID: 17085597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane proteins as 14-3-3 clients in functional regulation and intracellular transport.
    Smith AJ; Daut J; Schwappach B
    Physiology (Bethesda); 2011 Jun; 26(3):181-91. PubMed ID: 21670164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small molecules, peptides and natural products: getting a grip on 14-3-3 protein-protein modulation.
    Bartel M; Schäfer A; Stevers LM; Ottmann C
    Future Med Chem; 2014 May; 6(8):903-21. PubMed ID: 24962282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Two Secondary Ligand Binding Sites in 14-3-3 Proteins Using Fragment Screening.
    Sijbesma E; Skora L; Leysen S; Brunsveld L; Koch U; Nussbaumer P; Jahnke W; Ottmann C
    Biochemistry; 2017 Aug; 56(30):3972-3982. PubMed ID: 28681606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 14-3-3 proteins--a family of universal scaffolds and regulators.
    Obsil T
    Semin Cell Dev Biol; 2011 Sep; 22(7):661-2. PubMed ID: 21971151
    [No Abstract]   [Full Text] [Related]  

  • 11. 14-3-3 proteins: regulators of numerous eukaryotic proteins.
    van Heusden GP
    IUBMB Life; 2005 Sep; 57(9):623-9. PubMed ID: 16203681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphomimicking mutations of human 14-3-3ζ affect its interaction with tau protein and small heat shock protein HspB6.
    Sluchanko NN; Sudnitsyna MV; Chernik IS; Seit-Nebi AS; Gusev NB
    Arch Biochem Biophys; 2011 Feb; 506(1):24-34. PubMed ID: 21081103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 14-3-3 proteins: a family of versatile molecular regulators.
    Obsilová V; Silhan J; Boura E; Teisinger J; Obsil T
    Physiol Res; 2008; 57 Suppl 3():S11-21. PubMed ID: 18481918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 14-3-3 protein interacts with and affects the structure of RGS domain of regulator of G protein signaling 3 (RGS3).
    Rezabkova L; Boura E; Herman P; Vecer J; Bourova L; Sulc M; Svoboda P; Obsilova V; Obsil T
    J Struct Biol; 2010 Jun; 170(3):451-61. PubMed ID: 20347994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of selenoprotein W with 14-3-3 proteins: a computational approach.
    Musiani F; Ciurli S; Dikiy A
    J Proteome Res; 2011 Mar; 10(3):968-76. PubMed ID: 21182337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structurally constrained residues outside the binding motif are essential in the interaction of 14-3-3 and phosphorylated partner.
    Uhart M; Iglesias AA; Bustos DM
    J Mol Biol; 2011 Mar; 406(4):552-7. PubMed ID: 21216250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights of the MLF1/14-3-3 interaction.
    Molzan M; Weyand M; Rose R; Ottmann C
    FEBS J; 2012 Feb; 279(4):563-71. PubMed ID: 22151054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single amino acid variation in barley 14-3-3 proteins leads to functional isoform specificity in the regulation of nitrate reductase.
    Sinnige MP; Roobeek I; Bunney TD; Visser AJ; Mol JN; de Boer AH
    Plant J; 2005 Dec; 44(6):1001-9. PubMed ID: 16359392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 14-3-3 proteins: a number of functions for a numbered protein.
    Bridges D; Moorhead GB
    Sci STKE; 2005 Aug; 2005(296):re10. PubMed ID: 16091624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 14-3-3 Proteins: insights from genome-wide studies in yeast.
    van Heusden GP
    Genomics; 2009 Nov; 94(5):287-93. PubMed ID: 19631734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.