These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 21920469)
1. Long-term culture of HL-1 cardiomyocytes in modular poly(ethylene glycol) microsphere-based scaffolds crosslinked in the phase-separated state. Smith AW; Segar CE; Nguyen PK; MacEwan MR; Efimov IR; Elbert DL Acta Biomater; 2012 Jan; 8(1):31-40. PubMed ID: 21920469 [TBL] [Abstract][Full Text] [Related]
2. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Lévesque SG; Lim RM; Shoichet MS Biomaterials; 2005 Dec; 26(35):7436-46. PubMed ID: 16023718 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of PU/PEGMA crosslinked hybrid scaffolds by in situ UV photopolymerization favoring human endothelial cells growth for vascular tissue engineering. Wang H; Feng Y; An B; Zhang W; Sun M; Fang Z; Yuan W; Khan M J Mater Sci Mater Med; 2012 Jun; 23(6):1499-510. PubMed ID: 22430593 [TBL] [Abstract][Full Text] [Related]
4. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Arcaute K; Mann B; Wicker R Acta Biomater; 2010 Mar; 6(3):1047-54. PubMed ID: 19683602 [TBL] [Abstract][Full Text] [Related]
5. Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering. Ni P; Fu S; Fan M; Guo G; Shi S; Peng J; Luo F; Qian Z Int J Nanomedicine; 2011; 6():3065-75. PubMed ID: 22163160 [TBL] [Abstract][Full Text] [Related]
6. Modular scaffolds assembled around living cells using poly(ethylene glycol) microspheres with macroporation via a non-cytotoxic porogen. Scott EA; Nichols MD; Kuntz-Willits R; Elbert DL Acta Biomater; 2010 Jan; 6(1):29-38. PubMed ID: 19607945 [TBL] [Abstract][Full Text] [Related]
7. Poly (ethylene glycol) hydrogel scaffolds with multiscale porosity for culture of human adipose-derived stem cells. Barnett HH; Heimbuck AM; Pursell I; Hegab RA; Sawyer BJ; Newman JJ; Caldorera-Moore ME J Biomater Sci Polym Ed; 2019 Aug; 30(11):895-918. PubMed ID: 31039085 [TBL] [Abstract][Full Text] [Related]
8. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics. Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921 [TBL] [Abstract][Full Text] [Related]
9. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering. Saghebasl S; Davaran S; Rahbarghazi R; Montaseri A; Salehi R; Ramazani A J Biomater Sci Polym Ed; 2018 Jul; 29(10):1185-1206. PubMed ID: 29490569 [TBL] [Abstract][Full Text] [Related]
11. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity. Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808 [TBL] [Abstract][Full Text] [Related]
12. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications. Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642 [TBL] [Abstract][Full Text] [Related]
14. Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity. Frassica MT; Jones SK; Diaz-Rodriguez P; Hahn MS; Grunlan MA Acta Biomater; 2019 Nov; 99():100-109. PubMed ID: 31536841 [TBL] [Abstract][Full Text] [Related]
15. Nanocomposite scaffolds with tunable mechanical and degradation capabilities: co-delivery of bioactive agents for bone tissue engineering. Cattalini JP; Roether J; Hoppe A; Pishbin F; Haro Durand L; Gorustovich A; Boccaccini AR; Lucangioli S; Mouriño V Biomed Mater; 2016 Oct; 11(6):065003. PubMed ID: 27767020 [TBL] [Abstract][Full Text] [Related]
16. Microsphere-based seamless scaffolds containing macroscopic gradients of encapsulated factors for tissue engineering. Singh M; Morris CP; Ellis RJ; Detamore MS; Berkland C Tissue Eng Part C Methods; 2008 Dec; 14(4):299-309. PubMed ID: 18795865 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of Off-the-Shelf Multilumen Poly(Ethylene Glycol) Nerve Guidance Conduits Using Stereolithography. Arcaute K; Mann BK; Wicker RB Tissue Eng Part C Methods; 2011 Jan; 17(1):27-38. PubMed ID: 20673135 [TBL] [Abstract][Full Text] [Related]
18. Novel poly(ethylene glycol) scaffolds crosslinked by hydrolyzable polyrotaxane for cartilage tissue engineering. Lee WK; Ichi T; Ooya T; Yamamoto T; Katoh M; Yui N J Biomed Mater Res A; 2003 Dec; 67(4):1087-92. PubMed ID: 14624493 [TBL] [Abstract][Full Text] [Related]
19. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates. Hu Y; Ma S; Yang Z; Zhou W; Du Z; Huang J; Yi H; Wang C Colloids Surf B Biointerfaces; 2016 Apr; 140():382-391. PubMed ID: 26774574 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique. Ji C; Annabi N; Hosseinkhani M; Sivaloganathan S; Dehghani F Acta Biomater; 2012 Feb; 8(2):570-8. PubMed ID: 21996623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]