BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21920526)

  • 1. Stress distributions and material properties determined in articular cartilage from MRI-based finite strains.
    Butz KD; Chan DD; Nauman EA; Neu CP
    J Biomech; 2011 Oct; 44(15):2667-72. PubMed ID: 21920526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ deformation of cartilage in cyclically loaded tibiofemoral joints by displacement-encoded MRI.
    Chan DD; Neu CP; Hull ML
    Osteoarthritis Cartilage; 2009 Nov; 17(11):1461-8. PubMed ID: 19447213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo cartilage contact deformation of human ankle joints under full body weight.
    Wan L; de Asla RJ; Rubash HE; Li G
    J Orthop Res; 2008 Aug; 26(8):1081-9. PubMed ID: 18327792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence and biomechanical role of cartilage split line pattern on tibiofemoral cartilage stress distribution during the stance phase of gait.
    Shim VB; Besier TF; Lloyd DG; Mithraratne K; Fernandez JF
    Biomech Model Mechanobiol; 2016 Feb; 15(1):195-204. PubMed ID: 25861029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of normal and osteoarthritic human articular cartilage.
    Robinson DL; Kersh ME; Walsh NC; Ackland DC; de Steiger RN; Pandy MG
    J Mech Behav Biomed Mater; 2016 Aug; 61():96-109. PubMed ID: 26851527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A finite element study of stress distributions in normal and osteoarthritic knee joints.
    Chantarapanich N; Nanakorn P; Chernchujit B; Sitthiseripratip K
    J Med Assoc Thai; 2009 Dec; 92 Suppl 6():S97-103. PubMed ID: 20120670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of bone inhomogeneity on tibiofemoral contact mechanics during physiological loading.
    Venäläinen MS; Mononen ME; Väänänen SP; Jurvelin JS; Töyräs J; Virén T; Korhonen RK
    J Biomech; 2016 May; 49(7):1111-1120. PubMed ID: 26965471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical properties of the pelvic floor muscles of continent and incontinent women using an inverse finite element analysis.
    Silva MET; Brandão S; Parente MPL; Mascarenhas T; Natal Jorge RM
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):842-852. PubMed ID: 28303730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of the tibio-femoral response to finite element modeling parameters.
    Beillas P; Lee SW; Tashman S; Yang KH
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):209-21. PubMed ID: 17558649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage.
    Zevenbergen L; Gsell W; Cai L; Chan DD; Famaey N; Vander Sloten J; Himmelreich U; Neu CP; Jonkers I
    Osteoarthritis Cartilage; 2018 Dec; 26(12):1699-1709. PubMed ID: 30172835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound speed varies in articular cartilage under indentation loading.
    Lötjönen P; Julkunen P; Tiitu V; Jurvelin JS; Töyräs J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2772-80. PubMed ID: 23443716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite element model of an idealized diarthrodial joint to investigate the effects of variation in the mechanical properties of the tissues.
    Dar FH; Aspden RM
    Proc Inst Mech Eng H; 2003; 217(5):341-8. PubMed ID: 14558646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Articular cartilage deformation determined in an intact tibiofemoral joint by displacement-encoded imaging.
    Chan DD; Neu CP; Hull ML
    Magn Reson Med; 2009 Apr; 61(4):989-93. PubMed ID: 19189290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element analysis of the meniscectomised tibio-femoral joint: implementation of advanced articular cartilage models.
    Mattei L; Campioni E; Accardi MA; Dini D
    Comput Methods Biomech Biomed Engin; 2014; 17(14):1553-71. PubMed ID: 23452160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microstructurally based continuum model of cartilage viscoelasticity and permeability incorporating measured statistical fiber orientations.
    Pierce DM; Unterberger MJ; Trobin W; Ricken T; Holzapfel GA
    Biomech Model Mechanobiol; 2016 Feb; 15(1):229-44. PubMed ID: 26001349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element study of a tissue-engineered cartilage transplant in human tibiofemoral joint.
    Vahdati A; Wagner DR
    Comput Methods Biomech Biomed Engin; 2012; 15(11):1211-21. PubMed ID: 21809943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element prediction of transchondral stress and strain in the human hip.
    Henak CR; Ateshian GA; Weiss JA
    J Biomech Eng; 2014 Feb; 136(2):021021. PubMed ID: 24292495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study.
    Venäläinen MS; Mononen ME; Jurvelin JS; Töyräs J; Virén T; Korhonen RK
    J Biomech Eng; 2014 Dec; 136(12):121005. PubMed ID: 25322202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of normal gait on in vivo tibiofemoral cartilage strains.
    Lad NK; Liu B; Ganapathy PK; Utturkar GM; Sutter EG; Moorman CT; Garrett WE; Spritzer CE; DeFrate LE
    J Biomech; 2016 Sep; 49(13):2870-2876. PubMed ID: 27421206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.