BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 21922087)

  • 1. Electronic coupling in iron oxide-modified TiO2 leads to a reduced band gap and charge separation for visible light active photocatalysis.
    Nolan M
    Phys Chem Chem Phys; 2011 Oct; 13(40):18194-9. PubMed ID: 21922087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modification of TiO2 with metal oxide nanoclusters: a route to composite photocatalytic materials.
    Nolan M
    Chem Commun (Camb); 2011 Aug; 47(30):8617-9. PubMed ID: 21717031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles prediction of new photocatalyst materials with visible-light absorption and improved charge separation: surface modification of rutile TiO₂ with nanoclusters of MgO and Ga₂O₃.
    Nolan M
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5863-71. PubMed ID: 23062286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity.
    Xiang Q; Yu J; Jaroniec M
    Phys Chem Chem Phys; 2011 Mar; 13(11):4853-61. PubMed ID: 21103562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fullerol-titania charge-transfer-mediated photocatalysis working under visible light.
    Park Y; Singh NJ; Kim KS; Tachikawa T; Majima T; Choi W
    Chemistry; 2009 Oct; 15(41):10843-50. PubMed ID: 19760729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactivity of sub 1 nm supported clusters: (TiO2)n clusters supported on rutile TiO2 (110).
    Iwaszuk A; Nolan M
    Phys Chem Chem Phys; 2011 Mar; 13(11):4963-73. PubMed ID: 21331430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrothermal synthesis of ionic liquid [Bmim]OH-modified TiO2 nanoparticles with enhanced photocatalytic activity under visible light.
    Hu S; Wang A; Li X; Wang Y; Löwe H
    Chem Asian J; 2010 May; 5(5):1171-7. PubMed ID: 20379993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tin oxide-surface modified anatase titanium(IV) dioxide with enhanced UV-light photocatalytic activity.
    Fujishima M; Jin Q; Yamamoto H; Tada H; Nolan M
    Phys Chem Chem Phys; 2012 Jan; 14(2):705-11. PubMed ID: 22089546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinvestigation of the photocatalytic reaction mechanism for Pt-complex-modified TiO2 under visible light irradiation by means of ESR spectroscopy and chemiluminescence photometry.
    Nishikawa M; Sakamoto H; Nosaka Y
    J Phys Chem A; 2012 Oct; 116(39):9674-9. PubMed ID: 22950821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies of making TiO2 and ZnO visible light active.
    Rehman S; Ullah R; Butt AM; Gohar ND
    J Hazard Mater; 2009 Oct; 170(2-3):560-9. PubMed ID: 19540666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic effects in La/N codoped TiO2 anatase (101) surface correlated with enhanced visible-light photocatalytic activity.
    Sun L; Zhao X; Cheng X; Sun H; Li Y; Li P; Fan W
    Langmuir; 2012 Apr; 28(13):5882-91. PubMed ID: 22401140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marked enhancement of photocatalytic activity and photochemical stability of N-doped TiO2 nanocrystals by Fe3+/Fe2+ surface modification.
    Dong F; Wang H; Wu Z; Qiu J
    J Colloid Interface Sci; 2010 Mar; 343(1):200-8. PubMed ID: 19969303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible light photocatalysis with platinized rutile TiO2 for aqueous organic oxidation.
    Sun B; Smirniotis PG; Boolchand P
    Langmuir; 2005 Nov; 21(24):11397-403. PubMed ID: 16285816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doped TiO2 and TiO2 nanotubes: synthesis and applications.
    Nah YC; Paramasivam I; Schmuki P
    Chemphyschem; 2010 Sep; 11(13):2698-713. PubMed ID: 20648515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the electronic structure and band gap evolution of titanium oxide clusters (TiO(2))(n)(-) (n = 1-10) using photoelectron spectroscopy.
    Zhai HJ; Wang LS
    J Am Chem Soc; 2007 Mar; 129(10):3022-6. PubMed ID: 17300196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of crystal phase in determining photocatalytic activity of nitrogen doped TiO2.
    Liu G; Wang X; Chen Z; Cheng HM; Lu GQ
    J Colloid Interface Sci; 2009 Jan; 329(2):331-8. PubMed ID: 18848707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics.
    Kumar SG; Devi LG
    J Phys Chem A; 2011 Nov; 115(46):13211-41. PubMed ID: 21919459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AgIO3-modified AgI/TiO2 composites for photocatalytic degradation of p-chlorophenol under visible light irradiation.
    Song S; Hong F; He Z; Cai Q; Chen J
    J Colloid Interface Sci; 2012 Jul; 378(1):159-66. PubMed ID: 22572219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Great enhancement of photocatalytic activity of nitrogen-doped titania by coupling with tungsten oxide.
    Gao B; Ma Y; Cao Y; Yang W; Yao J
    J Phys Chem B; 2006 Jul; 110(29):14391-7. PubMed ID: 16854147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity.
    Li LH; Deng ZX; Xiao JX; Yang GW
    Nanotechnology; 2015 Jan; 26(25):255705. PubMed ID: 26040400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.