BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21922107)

  • 1. Monitoring protein distributions based on patterns generated by protein adsorption behavior in a microfluidic channel.
    Choi S; Huang S; Li J; Chae J
    Lab Chip; 2011 Nov; 11(21):3681-8. PubMed ID: 21922107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.
    Lee KH; Su YD; Chen SJ; Tseng FG; Lee GB
    Biosens Bioelectron; 2007 Nov; 23(4):466-72. PubMed ID: 17618110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic biosensor based on competitive protein adsorption for thyroglobulin detection.
    Choi S; Chae J
    Biosens Bioelectron; 2009 Sep; 25(1):118-23. PubMed ID: 19577460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon resonance protein sensor using Vroman effect.
    Choi S; Yang Y; Chae J
    Biosens Bioelectron; 2008 Dec; 24(4):899-905. PubMed ID: 18768307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monolayers of 3-mercaptopropyl-amino acid to reduce the nonspecific adsorption of serum proteins on the surface of biosensors.
    Bolduc OR; Masson JF
    Langmuir; 2008 Oct; 24(20):12085-91. PubMed ID: 18823086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-associated water and secondary structure effect removal of blood proteins from metallic substrates.
    Anand G; Zhang F; Linhardt RJ; Belfort G
    Langmuir; 2011 Mar; 27(5):1830-6. PubMed ID: 21182242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system.
    Kurita R; Yokota Y; Sato Y; Mizutani F; Niwa O
    Anal Chem; 2006 Aug; 78(15):5525-31. PubMed ID: 16878891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localized surface plasmon resonance biosensor integrated with microfluidic chip.
    Huang C; Bonroy K; Reekmans G; Laureyn W; Verhaegen K; De Vlaminck I; Lagae L; Borghs G
    Biomed Microdevices; 2009 Aug; 11(4):893-901. PubMed ID: 19353272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy.
    Moon J; Kang T; Oh S; Hong S; Yi J
    J Colloid Interface Sci; 2006 Jun; 298(2):543-9. PubMed ID: 16458912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide self-assembled monolayers for label-free and unamplified surface plasmon resonance biosensing in crude cell lysate.
    Bolduc OR; Clouthier CM; Pelletier JN; Masson JF
    Anal Chem; 2009 Aug; 81(16):6779-88. PubMed ID: 19606821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of the orientations of adsorbed protein using an empirical energy function with implicit solvation.
    Sun Y; Welsh WJ; Latour RA
    Langmuir; 2005 Jun; 21(12):5616-26. PubMed ID: 15924498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SPR Studies of the Nonspecific Adsorption Kinetics of Human IgG and BSA on Gold Surfaces Modified by Self-Assembled Monolayers (SAMs).
    Silin V; Weetall H; Vanderah DJ
    J Colloid Interface Sci; 1997 Jan; 185(1):94-103. PubMed ID: 9056309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell adhesion on chiral surface: the role of protein adsorption.
    Zhou F; Yuan L; Li D; Huang H; Sun T; Chen H
    Colloids Surf B Biointerfaces; 2012 Feb; 90():97-101. PubMed ID: 22055625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a "membrane cloaking" method for amperometric enzyme immunoassay and surface plasmon resonance analysis of proteins in serum samples.
    Phillips KS; Han JH; Cheng Q
    Anal Chem; 2007 Feb; 79(3):899-907. PubMed ID: 17263314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of peptide-surface interactions.
    Raut VP; Agashe MA; Stuart SJ; Latour RA
    Langmuir; 2005 Feb; 21(4):1629-39. PubMed ID: 15697318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic SPR study of human plasma protein adsorption behavior on the controlled surface packing of self-assembled poly(ethylene oxide) triblock copolymer surfaces.
    Chang Y; Chu WL; Chen WY; Zheng J; Liu L; Ruaan RC; Higuchi A
    J Biomed Mater Res A; 2010 Apr; 93(1):400-8. PubMed ID: 19569222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic device for immunoassays based on surface plasmon resonance imaging.
    Luo Y; Yu F; Zare RN
    Lab Chip; 2008 May; 8(5):694-700. PubMed ID: 18432338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A smart surface in a microfluidic chip for controlled protein separation.
    Mu L; Liu Y; Cai S; Kong J
    Chemistry; 2007; 13(18):5113-20. PubMed ID: 17407110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding behavior of CRP and anti-CRP antibody analyzed with SPR and AFM measurement.
    Lee SK; Kim HC; Cho SJ; Jeong SW; Jeon WB
    Ultramicroscopy; 2008 Sep; 108(10):1374-8. PubMed ID: 18562112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial energetics of blood plasma and serum adsorption to a hydrophobic self-assembled monolayer surface.
    Krishnan A; Cha P; Liu YH; Allara D; Vogler EA;
    Biomaterials; 2006 Jun; 27(17):3187-94. PubMed ID: 16494939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.