BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 21922273)

  • 1. Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: a review of proteomics analyses.
    Wang J; Yuan W; Li MD
    Mol Neurobiol; 2011 Dec; 44(3):269-86. PubMed ID: 21922273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse.
    Korpi ER; den Hollander B; Farooq U; Vashchinkina E; Rajkumar R; Nutt DJ; Hyytiä P; Dawe GS
    Pharmacol Rev; 2015 Oct; 67(4):872-1004. PubMed ID: 26403687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of drugs of abuse on the central neuropeptide Y system.
    Gonçalves J; Martins J; Baptista S; Ambrósio AF; Silva AP
    Addict Biol; 2016 Jul; 21(4):755-65. PubMed ID: 25904345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct patterns of DeltaFosB induction in brain by drugs of abuse.
    Perrotti LI; Weaver RR; Robison B; Renthal W; Maze I; Yazdani S; Elmore RG; Knapp DJ; Selley DE; Martin BR; Sim-Selley L; Bachtell RK; Self DW; Nestler EJ
    Synapse; 2008 May; 62(5):358-69. PubMed ID: 18293355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuroproteomics and its applications in research on nicotine and other drugs of abuse.
    Li MD; Wang J
    Proteomics Clin Appl; 2007 Nov; 1(11):1406-27. PubMed ID: 21136639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Addictive drugs as reinforcers: multiple partial actions on memory systems.
    White NM
    Addiction; 1996 Jul; 91(7):921-49; discussion 951-65. PubMed ID: 8688822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nicotine pre-treatment reduces sensitivity to the interoceptive stimulus effects of commonly abused drugs as assessed with taste conditioning paradigms.
    Loney GC; Meyer PJ
    Drug Alcohol Depend; 2019 Jan; 194():341-350. PubMed ID: 30472574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular biology of addictive drugs.
    Mackler SA; Eberwine JH
    Mol Neurobiol; 1991; 5(1):45-58. PubMed ID: 1725703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in endocannabinoid contents in the brain of rats chronically exposed to nicotine, ethanol or cocaine.
    González S; Cascio MG; Fernández-Ruiz J; Fezza F; Di Marzo V; Ramos JA
    Brain Res; 2002 Nov; 954(1):73-81. PubMed ID: 12393235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dissection of transcriptional modules regulated by various drugs of abuse in the mouse striatum.
    Piechota M; Korostynski M; Solecki W; Gieryk A; Slezak M; Bilecki W; Ziolkowska B; Kostrzewa E; Cymerman I; Swiech L; Jaworski J; Przewlocki R
    Genome Biol; 2010; 11(5):R48. PubMed ID: 20459597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of oxytocin in the neuroadaptation to drugs of abuse.
    Sarnyai Z; Kovács GL
    Psychoneuroendocrinology; 1994; 19(1):85-117. PubMed ID: 9210215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of alcohol and nicotine abuse on gene expression in the brain.
    Flatscher-Bader T; Wilce PA
    Nutr Res Rev; 2009 Dec; 22(2):148-62. PubMed ID: 19900347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reflections on: "A general role for adaptations in G-Proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function".
    Nestler EJ
    Brain Res; 2016 Aug; 1645():71-4. PubMed ID: 26740398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term alterations in vulnerability to addiction to drugs of abuse and in brain gene expression after early life ethanol exposure.
    Barbier E; Pierrefiche O; Vaudry D; Vaudry H; Daoust M; Naassila M
    Neuropharmacology; 2008 Dec; 55(7):1199-211. PubMed ID: 18713641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function.
    Terwilliger RZ; Beitner-Johnson D; Sevarino KA; Crain SM; Nestler EJ
    Brain Res; 1991 May; 548(1-2):100-10. PubMed ID: 1651140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods in drug abuse neuroproteomics: methamphetamine psychoproteome.
    Kobeissy FH; Zhang Z; Sadasivan S; Gold MS; Wang KK
    Methods Mol Biol; 2009; 566():217-28. PubMed ID: 20058175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alcohol-, nicotine-, and cocaine-evoked release of morphine from invertebrate ganglia: model system for screening drugs of abuse.
    Zhu W; Mantione KJ; Casares FM; Cadet P; Kim JW; Bilfinger TV; Kream RM; Khalill S; Singh S; Stefano GB
    Med Sci Monit; 2006 May; 12(5):BR155-61. PubMed ID: 16641868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adolescence versus adulthood: Differences in basal mesolimbic and nigrostriatal dopamine transmission and response to drugs of abuse.
    Corongiu S; Dessì C; Cadoni C
    Addict Biol; 2020 Jan; 25(1):e12721. PubMed ID: 30779271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drugs of abuse and immediate-early genes in the forebrain.
    Harlan RE; Garcia MM
    Mol Neurobiol; 1998 Jun; 16(3):221-67. PubMed ID: 9626665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutritional effects of marijuana, heroin, cocaine, and nicotine.
    Mohs ME; Watson RR; Leonard-Green T
    J Am Diet Assoc; 1990 Sep; 90(9):1261-7. PubMed ID: 2204648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.