These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21922399)

  • 1. Neuropeptide localization in nonmammalian vertebrates.
    de Girolamo P; Lucini C
    Methods Mol Biol; 2011; 789():37-56. PubMed ID: 21922399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep and orexins in nonmammalian vertebrates.
    Volkoff H
    Vitam Horm; 2012; 89():315-39. PubMed ID: 22640621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of D2 dopamine receptors in vertebrate retinae with anti-peptide antibodies.
    Wagner HJ; Luo BG; Ariano MA; Sibley DR; Stell WK
    J Comp Neurol; 1993 May; 331(4):469-81. PubMed ID: 8509505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunohistochemistry of the adenohypophysis of non-mammalian vertebrates.
    Doerr-Schott J
    Acta Histochem Suppl; 1980; 22():185-223. PubMed ID: 6265971
    [No Abstract]   [Full Text] [Related]  

  • 5. Distribution of immunoreactive Tamm-Horsfall protein in various species in the vertebrate classes.
    Howie AJ; Lote CJ; Cunningham AA; Zaccone G; Fasulo S
    Cell Tissue Res; 1993 Oct; 274(1):15-9. PubMed ID: 8242703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leucine aminopeptidase activity in blood and hemopoietic organs of different vertebrates. A histochemical comparative study.
    Nano R; de Piceis Polver P; Gerzeli G
    Acta Histochem; 1987; 82(1):83-8. PubMed ID: 3122509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic acid (or anion) and organic base (or cation) transport by renal tubules of nonmammalian vertebrates.
    Dantzler WH
    J Exp Zool; 1989 Mar; 249(3):247-57. PubMed ID: 2651553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of nonmammalian ghrelin.
    Kaiya H; Hosoda H; Kangawa K; Miyazato M
    Methods Enzymol; 2012; 514():75-87. PubMed ID: 22975047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative distribution of neurotensin-like immunoreactivity in the brain of a teleost (Carassius auratus), an amphibian (Hyla meridionalis), and a reptile (Gallotia galloti).
    Bello AR; Milán J; Anglade I; Martín A; Negrín I; Díaz C; Conlon JM; Tramu G; Kah O
    J Comp Neurol; 1994 Oct; 348(4):511-30. PubMed ID: 7836560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The comparative physiology of calcium regulation in submammalian vertebrates.
    Feinblatt JD
    Adv Comp Physiol Biochem; 1982; 8():73-110. PubMed ID: 6753523
    [No Abstract]   [Full Text] [Related]  

  • 11. Immuno-cross reactivity of transglutaminase and cornification marker proteins in the epidermis of vertebrates suggests common processes of soft cornification across species.
    Alibardi L; Toni M
    J Exp Zool B Mol Dev Evol; 2004 Nov; 302(6):526-49. PubMed ID: 15468051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of glial fibrillary acidic protein (GFAP)-like immunoreactivity in the retina of some representative vertebrates.
    Sassoè Pognetto M; Panzanelli P; Artero C; Fasolo A; Cantino D
    Eur J Histochem; 1992; 36(4):467-77. PubMed ID: 1283834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis.
    Mink JW; Blumenschine RJ; Adams DB
    Am J Physiol; 1981 Sep; 241(3):R203-12. PubMed ID: 7282965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The regional production of acetylcholine in the brains of lower and higher vertebrates.
    Wächtler K
    Comp Biochem Physiol C Comp Pharmacol; 1980; 65C(1):1-16. PubMed ID: 6102008
    [No Abstract]   [Full Text] [Related]  

  • 15. Comparative histochemistry and electron microscopy of the eosinophil leucocytes of vertebrates. I. A study of avian, reptile, amphibian and fish leucocytes.
    Kelényi G; Németh A
    Acta Biol Acad Sci Hung; 1969; 20(4):405-22. PubMed ID: 5377321
    [No Abstract]   [Full Text] [Related]  

  • 16. [Na+/H+-exchanger in tissues of vertebrates].
    Gusev GP
    Zh Evol Biokhim Fiziol; 2001; 37(6):457-62. PubMed ID: 11898592
    [No Abstract]   [Full Text] [Related]  

  • 17. Phylogeny of renal phosphate transport in the vertebrates.
    Bijvoet OL; Reitsma PH
    Adv Exp Med Biol; 1977; 81():41-53. PubMed ID: 331900
    [No Abstract]   [Full Text] [Related]  

  • 18. Blood-brain interfaces in vertebrates: a comparative approach.
    Cserr HF; Bundgaard M
    Am J Physiol; 1984 Mar; 246(3 Pt 2):R277-88. PubMed ID: 6367490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The comparative isozymology of vertebrate hexokinases.
    Ureta T
    Comp Biochem Physiol B; 1982; 71(4):549-55. PubMed ID: 7044667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroanatomical distribution of MCH in the brain and pituitary of submammalian vertebrates.
    Vallarino M; Bruzzone F; Vaudry H
    Peptides; 2009 Nov; 30(11):1973-8. PubMed ID: 19428141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.