These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21922406)

  • 1. Fluorescence imaging with single-molecule sensitivity and fluorescence correlation spectroscopy of cell-penetrating neuropeptides.
    Vukojević V; Gräslund A; Bakalkin G
    Methods Mol Biol; 2011; 789():147-70. PubMed ID: 21922406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translocation of dynorphin neuropeptides across the plasma membrane. A putative mechanism of signal transmission.
    Marinova Z; Vukojevic V; Surcheva S; Yakovleva T; Cebers G; Pasikova N; Usynin I; Hugonin L; Fang W; Hallberg M; Hirschberg D; Bergman T; Langel U; Hauser KF; Pramanik A; Aldrich JV; Gräslund A; Terenius L; Bakalkin G
    J Biol Chem; 2005 Jul; 280(28):26360-70. PubMed ID: 15894804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of the intracellular stability of CPPs.
    Ruttekolk IR; Verdurmen WP; Chung YD; Brock R
    Methods Mol Biol; 2011; 683():69-80. PubMed ID: 21053123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipoprotein complex of equine lysozyme with oleic acid (ELOA) interactions with the plasma membrane of live cells.
    Vukojević V; Bowen AM; Wilhelm K; Ming Y; Ce Z; Schleucher J; Hore PJ; Terenius L; Morozova-Roche LA
    Langmuir; 2010 Sep; 26(18):14782-7. PubMed ID: 20735022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy.
    Vasconcelos L; Lehto T; Madani F; Radoi V; Hällbrink M; Vukojević V; Langel Ü
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):491-504. PubMed ID: 28962904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of weak ligand interactions of leukocyte Ig-like receptor B1 by fluorescence correlation spectroscopy.
    Kuroki K; Kobayashi S; Shiroishi M; Kajikawa M; Okamoto N; Kohda D; Maenaka K
    J Immunol Methods; 2007 Mar; 320(1-2):172-6. PubMed ID: 17217953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence correlation spectroscopy: molecular complexing in solution and in living cells.
    Bulseco DA; Wolf DE
    Methods Cell Biol; 2013; 114():489-524. PubMed ID: 23931520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence lifetime cross correlation spectroscopy resolves EGFR and antagonist interaction in live cells.
    Chen J; Irudayaraj J
    Anal Chem; 2010 Aug; 82(15):6415-21. PubMed ID: 20586411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence correlation spectroscopy in living cells.
    Kim SA; Heinze KG; Schwille P
    Nat Methods; 2007 Nov; 4(11):963-73. PubMed ID: 17971781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy.
    Kusumi A; Shirai YM; Koyama-Honda I; Suzuki KG; Fujiwara TK
    FEBS Lett; 2010 May; 584(9):1814-23. PubMed ID: 20178787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning fluorescence correlation spectroscopy: a tool for probing microsecond dynamics of surface-bound fluorescent species.
    Xiao Y; Buschmann V; Weston KD
    Anal Chem; 2005 Jan; 77(1):36-46. PubMed ID: 15623276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insulin binding monitored by fluorescence correlation spectroscopy.
    Zhong ZH; Pramanik A; Ekberg K; Jansson OT; Jörnvall H; Wahren J; Rigler R
    Diabetologia; 2001 Sep; 44(9):1184-8. PubMed ID: 11596675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence correlation spectroscopy.
    Bacia K; Schwille P
    Methods Mol Biol; 2007; 398():73-84. PubMed ID: 18214375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand-macromolecule interactions in live cells by fluorescence correlation spectroscopy.
    Pramanik A
    Methods Mol Biol; 2009; 572():279-90. PubMed ID: 20694699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Penetration without cells: membrane translocation of cell-penetrating peptides in the model giant plasma membrane vesicles.
    Säälik P; Niinep A; Pae J; Hansen M; Lubenets D; Langel Ü; Pooga M
    J Control Release; 2011 Jul; 153(2):117-25. PubMed ID: 21420454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand binding by estrogen receptor beta attached to nanospheres measured by fluorescence correlation spectroscopy.
    Allen NW; Thompson NL
    Cytometry A; 2006 Jun; 69(6):524-32. PubMed ID: 16683264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accessing molecular dynamics in cells by fluorescence correlation spectroscopy.
    Dittrich P; Malvezzi-Campeggi F; Jahnz M; Schwille P
    Biol Chem; 2001 Mar; 382(3):491-4. PubMed ID: 11347899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence correlation spectroscopy for the detection and study of single molecules in biology.
    Medina MA; Schwille P
    Bioessays; 2002 Aug; 24(8):758-64. PubMed ID: 12210537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New concepts for fluorescence correlation spectroscopy on membranes.
    Ries J; Schwille P
    Phys Chem Chem Phys; 2008 Jun; 10(24):3487-97. PubMed ID: 18548154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence correlation spectroscopy as a tool to investigate chemical reactions in solutions and on cell surfaces.
    Widengren J; Rigler R
    Cell Mol Biol (Noisy-le-grand); 1998 Jul; 44(5):857-79. PubMed ID: 9764752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.