BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 21922555)

  • 1. Dynamic-light-scattering-based sequence-specific recognition of double-stranded DNA with oligonucleotide-functionalized gold nanoparticles.
    Miao XM; Xiong C; Wang WW; Ling LS; Shuai XT
    Chemistry; 2011 Sep; 17(40):11230-6. PubMed ID: 21922555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitive detection of glucose in human serum with oligonucleotide modified gold nanoparticles by using dynamic light scattering technique.
    Miao X; Ling L; Shuai X
    Biosens Bioelectron; 2013 Mar; 41():880-3. PubMed ID: 23084753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A one-step highly sensitive method for DNA detection using dynamic light scattering.
    Dai Q; Liu X; Coutts J; Austin L; Huo Q
    J Am Chem Soc; 2008 Jul; 130(26):8138-9. PubMed ID: 18540598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ultrasensitive method for the detection of gene fragment from transgenics using label-free gold nanoparticle probe and dynamic light scattering.
    Gao D; Sheng Z; Han H
    Anal Chim Acta; 2011 Jun; 696(1-2):1-5. PubMed ID: 21621028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanoparticles-based colorimetric investigation of triplex formation under weak alkalic pH environment with the aid of Ag+.
    Xiong C; Wu C; Zhang H; Ling L
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):956-61. PubMed ID: 21632279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule technology for rapid detection of DNA hybridization based on resonance light scattering of gold nanoparticles.
    Wang K; Qiu X; Dong C; Ren J
    Chembiochem; 2007 Jul; 8(10):1126-9. PubMed ID: 17506038
    [No Abstract]   [Full Text] [Related]  

  • 7. LNA functionalized gold nanoparticles as probes for double stranded DNA through triplex formation.
    McKenzie F; Faulds K; Graham D
    Chem Commun (Camb); 2008 May; (20):2367-9. PubMed ID: 18473072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasensitive detection of lead(II) with DNAzyme and gold nanoparticles probes by using a dynamic light scattering technique.
    Miao X; Ling L; Shuai X
    Chem Commun (Camb); 2011 Apr; 47(14):4192-4. PubMed ID: 21369573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single gold nanoparticles counter: an ultrasensitive detection platform for one-step homogeneous immunoassays and DNA hybridization assays.
    Xie C; Xu F; Huang X; Dong C; Ren J
    J Am Chem Soc; 2009 Sep; 131(35):12763-70. PubMed ID: 19678640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical molecular beacon biosensor for sequence-specific recognition of double-stranded DNA.
    Miao X; Guo X; Xiao Z; Ling L
    Biosens Bioelectron; 2014 Sep; 59():54-7. PubMed ID: 24690562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free, sensitive detection of Hg(II) with gold nanoparticles by using dynamic light scattering technique.
    Xiong C; Ling L
    Talanta; 2012 Jan; 89():317-21. PubMed ID: 22284498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-enhanced Raman scattering detection of DNA derived from the west nile virus genome using magnetic capture of Raman-active gold nanoparticles.
    Zhang H; Harpster MH; Park HJ; Johnson PA; Wilson WC
    Anal Chem; 2011 Jan; 83(1):254-60. PubMed ID: 21121693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-step label-free optical genosensing system for sequence-specific DNA related to the human immunodeficiency virus based on the measurements of light scattering signals of gold nanorods.
    He W; Huang CZ; Li YF; Xie JP; Yang RG; Zhou PF; Wang J
    Anal Chem; 2008 Nov; 80(22):8424-30. PubMed ID: 18937420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly sensitive sensor for Cu2+ with unmodified gold nanoparticles and DNAzyme by using the dynamic light scattering technique.
    Miao X; Ling L; Cheng D; Shuai X
    Analyst; 2012 Jul; 137(13):3064-9. PubMed ID: 22645734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual scanometric detection of DNA through silver enhancement regulated by gold-nanoparticle aggregation with a molecular beacon as the trigger.
    Ji H; Dong H; Yan F; Lei J; Ding L; Gao W; Ju H
    Chemistry; 2011 Sep; 17(40):11344-9. PubMed ID: 21850726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive and selective localized surface plasmon resonance light-scattering sensor for Ag+ with unmodified gold nanoparticles.
    Wu C; Xiong C; Wang L; Lan C; Ling L
    Analyst; 2010 Oct; 135(10):2682-7. PubMed ID: 20820488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Method for detection of Hg2+ based on the specific thymine-Hg2+-thymine interaction in the DNA hybridization on the surface of quartz crystal microbalance.
    Sheng Z; Han J; Zhang J; Zhao H; Jiang L
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):289-92. PubMed ID: 21700432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxylamine-amplified gold nanoparticles for the homogeneous detection of sequence-specific DNA.
    Fan A; Cai S; Cao Z; Lau C; Lu J
    Analyst; 2010 Jun; 135(6):1400-5. PubMed ID: 20407685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation effects of gold nanoparticles for single-base mismatch detection in influenza A (H1N1) DNA sequences using fluorescence and Raman measurements.
    Ganbold EO; Kang T; Lee K; Lee SY; Joo SW
    Colloids Surf B Biointerfaces; 2012 May; 93():148-53. PubMed ID: 22261178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanoparticles with asymmetric polymerase chain reaction for colorimetric detection of DNA sequence.
    Deng H; Xu Y; Liu Y; Che Z; Guo H; Shan S; Sun Y; Liu X; Huang K; Ma X; Wu Y; Liang XJ
    Anal Chem; 2012 Feb; 84(3):1253-8. PubMed ID: 22243128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.