These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 21922680)

  • 21. CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC.
    Liu J; Wang Y; Benin AI; Jakubczak P; Willis RR; LeVan MD
    Langmuir; 2010 Sep; 26(17):14301-7. PubMed ID: 20707342
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aminosilicone solvents for CO(2) capture.
    Perry RJ; Grocela-Rocha TA; O'Brien MJ; Genovese S; Wood BR; Lewis LN; Lam H; Soloveichik G; Rubinsztajn M; Kniajanski S; Draper S; Enick RM; Johnson JK; Xie HB; Tapriyal D
    ChemSusChem; 2010 Aug; 3(8):919-30. PubMed ID: 20730981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CO2 capture by metal-organic frameworks with van der Waals density functionals.
    Poloni R; Smit B; Neaton JB
    J Phys Chem A; 2012 May; 116(20):4957-64. PubMed ID: 22519821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermodynamic screening of metal-substituted MOFs for carbon capture.
    Koh HS; Rana MK; Hwang J; Siegel DJ
    Phys Chem Chem Phys; 2013 Apr; 15(13):4573-81. PubMed ID: 23420035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon dioxide capture in metal-organic frameworks.
    Sumida K; Rogow DL; Mason JA; McDonald TM; Bloch ED; Herm ZR; Bae TH; Long JR
    Chem Rev; 2012 Feb; 112(2):724-81. PubMed ID: 22204561
    [No Abstract]   [Full Text] [Related]  

  • 26. CO(2) capture from dilute gases as a component of modern global carbon management.
    Jones CW
    Annu Rev Chem Biomol Eng; 2011; 2():31-52. PubMed ID: 22432609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polar group and defect engineering in a metal-organic framework: synergistic promotion of carbon dioxide sorption and conversion.
    Jiang ZR; Wang H; Hu Y; Lu J; Jiang HL
    ChemSusChem; 2015 Mar; 8(5):878-85. PubMed ID: 25651098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources.
    Choi S; Drese JH; Jones CW
    ChemSusChem; 2009; 2(9):796-854. PubMed ID: 19731282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mathematical modeling and experimental breakthrough curves of carbon dioxide adsorption on metal organic framework CPM-5.
    Sabouni R; Kazemian H; Rohani S
    Environ Sci Technol; 2013 Aug; 47(16):9372-80. PubMed ID: 23889136
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ infrared study of the role of PEG in stabilizing silica-supported amines for CO(2) capture.
    Tanthana J; Chuang SS
    ChemSusChem; 2010 Aug; 3(8):957-64. PubMed ID: 20715287
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and energetic preferences of pi, sigma, and bidentate cation binding (Li(+), Na(+), and Mg(2+)) to aromatic amines (Ph-(CH(2))(n)-NH(2), n = 2-5): a theoretical study.
    Rao JS; Sastry GN
    J Phys Chem A; 2009 May; 113(18):5446-54. PubMed ID: 19358598
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations?
    Keskin S; van Heest TM; Sholl DS
    ChemSusChem; 2010 Aug; 3(8):879-91. PubMed ID: 20730980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tailor-made metal-organic frameworks from functionalized molecular building blocks and length-adjustable organic linkers by stepwise synthesis.
    Lan YQ; Li SL; Jiang HL; Xu Q
    Chemistry; 2012 Jun; 18(26):8076-83. PubMed ID: 22618965
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Screening the Effect of Water Vapour on Gas Adsorption Performance: Application to CO
    Chanut N; Bourrelly S; Kuchta B; Serre C; Chang JS; Wright PA; Llewellyn PL
    ChemSusChem; 2017 Apr; 10(7):1543-1553. PubMed ID: 28252246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of surface heterogeneity on the adsorption of CO₂ in microporous carbons.
    Liu Y; Wilcox J
    Environ Sci Technol; 2012 Feb; 46(3):1940-7. PubMed ID: 22216997
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of amine structure on carbon dioxide adsorption from ultradilute gas streams such as ambient air.
    Didas SA; Kulkarni AR; Sholl DS; Jones CW
    ChemSusChem; 2012 Oct; 5(10):2058-64. PubMed ID: 22764080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A combinatorial approach towards water-stable metal-organic frameworks for highly efficient carbon dioxide separation.
    Hu Z; Zhang K; Zhang M; Guo Z; Jiang J; Zhao D
    ChemSusChem; 2014 Oct; 7(10):2791-5. PubMed ID: 25124239
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption of CO
    Rehman A; Farrukh S; Hussain A; Fan X; Pervaiz E
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36214-36225. PubMed ID: 31713140
    [TBL] [Abstract][Full Text] [Related]  

  • 39. highly selective amino acid salt solutions as absorption liquid for CO(2) capture in gas-liquid membrane contactors.
    Simons K; Nijmeijer K; Mengers H; Brilman W; Wessling M
    ChemSusChem; 2010 Aug; 3(8):939-47. PubMed ID: 20623726
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Programmed pore architectures in modular quaternary metal-organic frameworks.
    Liu L; Konstas K; Hill MR; Telfer SG
    J Am Chem Soc; 2013 Nov; 135(47):17731-4. PubMed ID: 24180695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.