BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21922840)

  • 1. [Simulation and verification for model of phytoremediation on heavy metal contaminated sediment].
    Li HX; Lin WB; Li YQ; Nie YJ; Liu FJ; Zhao XH
    Huan Jing Ke Xue; 2011 Jul; 32(7):2119-24. PubMed ID: 21922840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ferric ion on bioleaching of heavy metals from contaminated sediment.
    Chen SY; Lin JG; Lee CY
    Water Sci Technol; 2003; 48(8):151-8. PubMed ID: 14682582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy Metal Uptakes by Myriophyllum verticillatum from Two Environmental Matrices: The Water and the Sediment.
    Sapci Z; Ustun EB
    Int J Phytoremediation; 2015; 17(1-6):290-7. PubMed ID: 25397988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Phytoremediation of complex contaminants in sewage river sediment by maize].
    Li HX; Zhao XH; Ma WF; Wang XD
    Huan Jing Ke Xue; 2008 Mar; 29(3):709-13. PubMed ID: 18649532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation potential of indigenous plants from Thai Nguyen province, Vietnam.
    Anh BT; Kim DD; Tua TV; Kien NT; Anh DT
    J Environ Biol; 2011 Mar; 32(2):257-62. PubMed ID: 21882664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate and effects of heavy metals in salt marsh sediments.
    Suntornvongsagul K; Burke DJ; Hamerlynck EP; Hahn D
    Environ Pollut; 2007 Sep; 149(1):79-91. PubMed ID: 17291650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of plants in metal cycling in a tidal wetland: implications for phytoremidiation.
    Teuchies J; Jacobs S; Oosterlee L; Bervoets L; Meire P
    Sci Total Environ; 2013 Feb; 445-446():146-54. PubMed ID: 23333510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of heavy metal toxicity and constructed wetland system as a tool in remediation.
    Usharani B; Vasudevan N
    Arch Environ Occup Health; 2016; 71(2):102-10. PubMed ID: 25454352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils.
    Balsamo RA; Kelly WJ; Satrio JA; Ruiz-Felix MN; Fetterman M; Wynn R; Hagel K
    Int J Phytoremediation; 2015; 17(1-6):448-55. PubMed ID: 25495935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils.
    Hong-Bo S; Li-Ye C; Cheng-Jiang R; Hua L; Dong-Gang G; Wei-Xiang L
    Crit Rev Biotechnol; 2010 Mar; 30(1):23-30. PubMed ID: 19821782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of Heavy Metals in Contaminated Water and Soil Using Miscanthus sp. Goedae-Uksae 1.
    Bang J; Kamala-Kannan S; Lee KJ; Cho M; Kim CH; Kim YJ; Bae JH; Kim KH; Myung H; Oh BT
    Int J Phytoremediation; 2015; 17(1-6):515-20. PubMed ID: 25747237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of total solids concentration on heavy metals bioleaching from contaminated sediment].
    Zhao L; Fang D; Shan HX; Jia YG
    Huan Jing Ke Xue; 2009 Aug; 30(8):2347-52. PubMed ID: 19799299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Bioremediation of heavy metal pollution by edible fungi: a review].
    Liu JF; Hu LJ; Liao DX; Su SM; Zhou ZK; Zhang S
    Ying Yong Sheng Tai Xue Bao; 2011 Feb; 22(2):543-8. PubMed ID: 21608273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Isolation, identification of Acidithiobacillus sp. and its role in the removal of heavy metals from contaminated sediments].
    Di F; Zhao L; Shan HX; Wang F; Zhao YG; Yang WW
    Huan Jing Ke Xue; 2009 Nov; 30(11):3358-63. PubMed ID: 20063754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration.
    Dahrazma B; Mulligan CN
    Chemosphere; 2007 Oct; 69(5):705-11. PubMed ID: 17604818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth.
    Li K; Ramakrishna W
    J Hazard Mater; 2011 May; 189(1-2):531-9. PubMed ID: 21420236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of variable importance for optimizing electrodialytic remediation of heavy metals from polluted harbour sediments.
    Pedersen KB; Lejon T; Ottosen LM; Jensen PE
    Environ Technol; 2015; 36(18):2364-73. PubMed ID: 25760936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.
    Tak HI; Ahmad F; Babalola OO
    Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A field study on phytoremediation of dredged sediment contaminated by heavy metals and nutrients: the impacts of sediment aeration.
    Wu J; Yang L; Zhong F; Cheng S
    Environ Sci Pollut Res Int; 2014 Dec; 21(23):13452-60. PubMed ID: 25012206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Application potential of siderophore-producing rhizobacteria in phytoremediation of heavy metals-contaminated soils: a review].
    Wang YL; Lin QQ; Li Y; Yang XH; Wang SZ; Qiu RL
    Ying Yong Sheng Tai Xue Bao; 2013 Jul; 24(7):2081-8. PubMed ID: 24175543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.