BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 21922957)

  • 1. The use of a constant load to generate equivalent viscoelastic strain in finite element analysis of cemented prosthetic joints subjected to cyclic loading.
    Lu Z; McKellop HA
    Proc Inst Mech Eng H; 2011 Aug; 225(8):809-20. PubMed ID: 21922957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of modular neck variation on bone and cement mantle mechanics around a total hip arthroplasty stem.
    Simpson DJ; Little JP; Gray H; Murray DW; Gill HS
    Clin Biomech (Bristol, Avon); 2009 Mar; 24(3):274-85. PubMed ID: 19263573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cement mantle fatigue failure in total hip replacement: experimental and computational testing.
    Jeffers JR; Browne M; Lennon AB; Prendergast PJ; Taylor M
    J Biomech; 2007; 40(7):1525-33. PubMed ID: 17070816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of bioactive PMMA-based bone cement under load-bearing conditions: an in vivo evaluation and FE simulation.
    Fottner A; Nies B; Kitanovic D; Steinbrück A; Mayer-Wagner S; Schröder C; Heinemann S; Pohl U; Jansson V
    J Mater Sci Mater Med; 2016 Sep; 27(9):138. PubMed ID: 27530301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cement creep on stem subsidence and stresses in the cement mantle of a total hip replacement.
    Lu Z; McKellop H
    J Biomed Mater Res; 1997 Feb; 34(2):221-6. PubMed ID: 9029302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone creep and short and long term subsidence after cemented stem total hip arthroplasty (THA).
    Norman TL; Shultz T; Noble G; Gruen TA; Blaha JD
    J Biomech; 2013 Mar; 46(5):949-55. PubMed ID: 23357700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prevention of mesh-dependent damage growth in finite element simulations of crack formation in acrylic bone cement.
    Stolk J; Verdonschot N; Mann KA; Huiskes R
    J Biomech; 2003 Jun; 36(6):861-71. PubMed ID: 12742454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the failure response of cement-bone constructs using a non-linear fracture mechanics approach.
    Mann KA; Damron LA
    J Biomech Eng; 2002 Aug; 124(4):462-70. PubMed ID: 12188213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axisymmetric finite element analysis of a debonded total hip stem with an unsupported distal tip.
    Norman TL; Saligrama VC; Hustosky KT; Gruen TA; Blaha JD
    J Biomech Eng; 1996 Aug; 118(3):399-404. PubMed ID: 8872263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fatigue damage model for the cement-bone interface.
    Kim DG; Miller MA; Mann KA
    J Biomech; 2004 Oct; 37(10):1505-12. PubMed ID: 15336925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue creep damage at the cement-bone interface: an experimental and a micro-mechanical finite element study.
    Waanders D; Janssen D; Miller MA; Mann KA; Verdonschot N
    J Biomech; 2009 Nov; 42(15):2513-9. PubMed ID: 19682690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface.
    Waanders D; Janssen D; Mann KA; Verdonschot N
    J Biomech; 2010 Nov; 43(15):3028-34. PubMed ID: 20692663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of interface conditions between ultrahigh molecular weight polyethylene and polymethyl methacrylate bone cement on the mechanical behaviour of total shoulder arthroplasty.
    Oosterom R; van Ostayen RA; Antonelli V; Bersee HE
    Proc Inst Mech Eng H; 2005 Nov; 219(6):425-35. PubMed ID: 16312102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modelling of bone cement polymerization: temperature and residual stresses.
    Pérez MA; Nuño N; Madrala A; García-Aznar JM; Doblaré M
    Comput Biol Med; 2009 Sep; 39(9):751-9. PubMed ID: 19615676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of curing characteristics on residual stress generation in polymethyl methacrylate bone cements.
    Hingston JA; Dunne NJ; Looney L; McGuinness GB
    Proc Inst Mech Eng H; 2008 Aug; 222(6):933-45. PubMed ID: 18935810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element analysis of a three-dimensional model of a proximal femur-cemented femoral THJR component construct: influence of assigned interface conditions on strain energy density.
    Lewis G; Duggineni R
    Biomed Mater Eng; 2006; 16(5):319-27. PubMed ID: 17075167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element simulation of early creep and wear in total hip arthroplasty.
    Bevill SL; Bevill GR; Penmetsa JR; Petrella AJ; Rullkoetter PJ
    J Biomech; 2005 Dec; 38(12):2365-74. PubMed ID: 16214484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Damage accumulation, fatigue and creep behaviour of vacuum mixed bone cement.
    Jeffers JR; Browne M; Taylor M
    Biomaterials; 2005 Sep; 26(27):5532-41. PubMed ID: 15860209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Influence of proximal stem geometry and stem-cement interface characteristics on bone and cement stresses in femoral hip arthroplasty: finite element analysis].
    Massin P; Astoin E; Lavaste F
    Rev Chir Orthop Reparatrice Appar Mot; 2003 Apr; 89(2):134-43. PubMed ID: 12844057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element-based preclinical testing of cemented total hip implants.
    Stolk J; Janssen D; Huiskes R; Verdonschot N
    Clin Orthop Relat Res; 2007 Mar; 456():138-47. PubMed ID: 17075379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.