BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21922958)

  • 1. Anisotropic strain transfer through the aortic valve and its relevance to the cellular mechanical environment.
    Lewinsohn AD; Anssari-Benham A; Lee DA; Taylor PM; Chester AH; Yacoub MH; Screen HR
    Proc Inst Mech Eng H; 2011 Aug; 225(8):821-30. PubMed ID: 21922958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch.
    Balachandran K; Konduri S; Sucosky P; Jo H; Yoganathan AP
    Ann Biomed Eng; 2006 Nov; 34(11):1655-65. PubMed ID: 17031600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internal shear properties of fresh porcine aortic valve cusps: implications for normal valve function.
    Talman EA; Boughner DR
    J Heart Valve Dis; 1996 Mar; 5(2):152-9. PubMed ID: 8665007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The glutaraldehyde-stabilized porcine aortic valve xenograft. I. Tensile viscoelastic properties of the fresh leaflet material.
    Lee JM; Courtman DW; Boughner DR
    J Biomed Mater Res; 1984 Jan; 18(1):61-77. PubMed ID: 6699033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves - comparison of mechanical properties.
    Kalejs M; Stradins P; Lacis R; Ozolanta I; Pavars J; Kasyanov V
    Interact Cardiovasc Thorac Surg; 2009 May; 8(5):553-6. PubMed ID: 19190025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved prediction of the collagen fiber architecture in the aortic heart valve.
    Driessen NJ; Bouten CV; Baaijens FP
    J Biomech Eng; 2005 Apr; 127(2):329-36. PubMed ID: 15971711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical and ultrastructural comparison of cryopreservation and a novel cellular extraction of porcine aortic valve leaflets.
    Courtman DW; Pereira CA; Omar S; Langdon SE; Lee JM; Wilson GJ
    J Biomed Mater Res; 1995 Dec; 29(12):1507-16. PubMed ID: 8600141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural preload of aortic valve leaflet components during glutaraldehyde fixation: effects on tissue mechanics.
    Vesely I; Lozon A
    J Biomech; 1993 Feb; 26(2):121-31. PubMed ID: 8429055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic loading response of bioprosthetic heart valves: effects of fixation stress state on the collagen fiber architecture.
    Wells SM; Sellaro T; Sacks MS
    Biomaterials; 2005 May; 26(15):2611-9. PubMed ID: 15585264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of compressive strains in porcine aortic valves cusps.
    Adamczyk MM; Vesely I
    J Heart Valve Dis; 2002 Jan; 11(1):75-83. PubMed ID: 11843509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element model of mechanically induced collagen fiber synthesis and degradation in the aortic valve.
    Boerboom RA; Driessen NJ; Bouten CV; Huyghe JM; Baaijens FP
    Ann Biomed Eng; 2003 Oct; 31(9):1040-53. PubMed ID: 14582607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micromechanics of the fibrosa and the ventricularis in aortic valve leaflets.
    Vesely I; Noseworthy R
    J Biomech; 1992 Jan; 25(1):101-13. PubMed ID: 1733978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An approach to the optimization of preparation of bioprosthetic heart valves.
    Mavrilas D; Missirlis Y
    J Biomech; 1991; 24(5):331-9. PubMed ID: 1904875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves.
    Korossis SA; Booth C; Wilcox HE; Watterson KG; Kearney JN; Fisher J; Ingham E
    J Heart Valve Dis; 2002 Jul; 11(4):463-71. PubMed ID: 12150291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of porcine pulmonary valve leaflets: how do they differ from aortic leaflets?
    Christie GW; Barratt-Boyes BG
    Ann Thorac Surg; 1995 Aug; 60(2 Suppl):S195-9. PubMed ID: 7646158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain transfer through the aortic valve.
    Anssari-Benam A; Gupta HS; Screen HR
    J Biomech Eng; 2012 Jun; 134(6):061003. PubMed ID: 22757500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ deformation of the aortic valve interstitial cell nucleus under diastolic loading.
    Huang HY; Liao J; Sacks MS
    J Biomech Eng; 2007 Dec; 129(6):880-89. PubMed ID: 18067392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp--Part I: Experimental results.
    Billiar KL; Sacks MS
    J Biomech Eng; 2000 Feb; 122(1):23-30. PubMed ID: 10790826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aortic valve leaflet mechanical properties facilitate diastolic valve function.
    Koch TM; Reddy BD; Zilla P; Franz T
    Comput Methods Biomech Biomed Engin; 2010; 13(2):225-34. PubMed ID: 19657802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress related collagen ultrastructure in human aortic valves--implications for tissue engineering.
    Balguid A; Driessen NJ; Mol A; Schmitz JP; Verheyen F; Bouten CV; Baaijens FP
    J Biomech; 2008 Aug; 41(12):2612-7. PubMed ID: 18701107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.