BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

533 related articles for article (PubMed ID: 21923110)

  • 1. Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma.
    Wang Y; Bao L; Liu Z; Pang DW
    Anal Chem; 2011 Nov; 83(21):8130-7. PubMed ID: 21923110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aptamer-based turn-on detection of thrombin in biological fluids based on efficient phosphorescence energy transfer from Mn-doped ZnS quantum dots to carbon nanodots.
    Zhang L; Cui P; Zhang B; Gao F
    Chemistry; 2013 Jul; 19(28):9242-50. PubMed ID: 23712510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upconversion fluorescence resonance energy transfer based biosensor for ultrasensitive detection of matrix metalloproteinase-2 in blood.
    Wang Y; Shen P; Li C; Wang Y; Liu Z
    Anal Chem; 2012 Feb; 84(3):1466-73. PubMed ID: 22242647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A convenient sandwich assay of thrombin in biological media using nanoparticle-enhanced fluorescence polarization.
    Yue Q; Shen T; Wang L; Xu S; Li H; Xue Q; Zhang Y; Gu X; Zhang S; Liu J
    Biosens Bioelectron; 2014 Jun; 56():231-6. PubMed ID: 24508546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upconversion fluorescence resonance energy transfer biosensor with aromatic polymer nanospheres as the lable-free energy acceptor.
    Wang Y; Wu Z; Liu Z
    Anal Chem; 2013 Jan; 85(1):258-64. PubMed ID: 23186324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection.
    Chang H; Tang L; Wang Y; Jiang J; Li J
    Anal Chem; 2010 Mar; 82(6):2341-6. PubMed ID: 20180560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer.
    Peng J; Wang Y; Wang J; Zhou X; Liu Z
    Biosens Bioelectron; 2011 Oct; 28(1):414-20. PubMed ID: 21852101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence resonance energy transfer biosensor between upconverting nanoparticles and palladium nanoparticles for ultrasensitive CEA detection.
    Li H; Shi L; Sun DE; Li P; Liu Z
    Biosens Bioelectron; 2016 Dec; 86():791-798. PubMed ID: 27476061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aptamer-based sensing for thrombin in red region via fluorescence resonant energy transfer between NaYF₄:Yb,Er upconversion nanoparticles and gold nanorods.
    Chen H; Yuan F; Wang S; Xu J; Zhang Y; Wang L
    Biosens Bioelectron; 2013 Oct; 48():19-25. PubMed ID: 23639344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer.
    Li H; Sun DE; Liu Y; Liu Z
    Biosens Bioelectron; 2014 May; 55():149-56. PubMed ID: 24373954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemiluminescence biosensor for the assay of small molecule and protein based on bifunctional aptamer and chemiluminescent functionalized gold nanoparticles.
    Chai Y; Tian D; Cui H
    Anal Chim Acta; 2012 Feb; 715():86-92. PubMed ID: 22244171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis.
    Xu H; Mao X; Zeng Q; Wang S; Kawde AN; Liu G
    Anal Chem; 2009 Jan; 81(2):669-75. PubMed ID: 19072289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A near infrared fluorescence resonance energy transfer based aptamer biosensor for insulin detection in human plasma.
    Wang Y; Gao D; Zhang P; Gong P; Chen C; Gao G; Cai L
    Chem Commun (Camb); 2014 Jan; 50(7):811-3. PubMed ID: 24292147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competition-derived FRET-switching cationic conjugated polymer-Ir(III) complex probe for thrombin detection.
    Du C; Hu Y; Zhang Q; Guo Z; Ge G; Wang S; Zhai C; Zhu M
    Biosens Bioelectron; 2018 Feb; 100():132-138. PubMed ID: 28886457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-resolved fluorescence aptamer-based sandwich assay for thrombin detection.
    Huang DW; Niu CG; Qin PZ; Ruan M; Zeng GM
    Talanta; 2010 Nov; 83(1):185-9. PubMed ID: 21035662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bi-cell surface plasmon resonance detection of aptamer mediated thrombin capture in serum.
    Mani RJ; Dye RG; Snider TA; Wang S; Clinkenbeard KD
    Biosens Bioelectron; 2011 Aug; 26(12):4832-6. PubMed ID: 21700444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bare magnetic nanoparticles as fluorescence quenchers for detection of thrombin.
    Yu J; Yang L; Liang X; Dong T; Liu H
    Analyst; 2015 Jun; 140(12):4114-20. PubMed ID: 25894923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: application to label-free thrombin detection.
    Chi CW; Lao YH; Li YS; Chen LC
    Biosens Bioelectron; 2011 Mar; 26(7):3346-52. PubMed ID: 21306887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplified QCM-D biosensor for protein based on aptamer-functionalized gold nanoparticles.
    Chen Q; Tang W; Wang D; Wu X; Li N; Liu F
    Biosens Bioelectron; 2010 Oct; 26(2):575-9. PubMed ID: 20692147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A signal-on electrochemiluminescence aptamer biosensor for the detection of ultratrace thrombin based on junction-probe.
    Zhang J; Chen P; Wu X; Chen J; Xu L; Chen G; Fu F
    Biosens Bioelectron; 2011 Jan; 26(5):2645-50. PubMed ID: 21146976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.