BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 21923132)

  • 1. Low-temperature chromophore isomerization reveals the photoswitching mechanism of the fluorescent protein Padron.
    Faro AR; Carpentier P; Jonasson G; Pompidor G; Arcizet D; Demachy I; Bourgeois D
    J Am Chem Soc; 2011 Oct; 133(41):16362-5. PubMed ID: 21923132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excited state dynamics of photoswitchable fluorescent protein Padron.
    Fron E; Van der Auweraer M; Hofkens J; Dedecker P
    J Phys Chem B; 2013 Dec; 117(51):16422-7. PubMed ID: 24308373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular basis of the light-driven switching of the photochromic fluorescent protein Padron.
    Brakemann T; Weber G; Andresen M; Groenhof G; Stiel AC; Trowitzsch S; Eggeling C; Grubmüller H; Hell SW; Wahl MC; Jakobs S
    J Biol Chem; 2010 May; 285(19):14603-9. PubMed ID: 20236929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromophore protonation state controls photoswitching of the fluoroprotein asFP595.
    Schäfer LV; Groenhof G; Boggio-Pasqua M; Robb MA; Grubmüller H
    PLoS Comput Biol; 2008 Mar; 4(3):e1000034. PubMed ID: 18369426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-temperature switching by photoinduced protonation in photochromic fluorescent proteins.
    Faro AR; Adam V; Carpentier P; Darnault C; Bourgeois D; de Rosny E
    Photochem Photobiol Sci; 2010 Feb; 9(2):254-62. PubMed ID: 20126803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible photoswitching in fluorescent proteins: a mechanistic view.
    Bourgeois D; Adam V
    IUBMB Life; 2012 Jun; 64(6):482-91. PubMed ID: 22535712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural evidence for a two-regime photobleaching mechanism in a reversibly switchable fluorescent protein.
    Duan C; Adam V; Byrdin M; Ridard J; Kieffer-Jaquinod S; Morlot C; Arcizet D; Demachy I; Bourgeois D
    J Am Chem Soc; 2013 Oct; 135(42):15841-50. PubMed ID: 24059326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary light-induced reaction steps of reversibly photoswitchable fluorescent protein Padron0.9 investigated by femtosecond spectroscopy.
    Walter A; Andresen M; Jakobs S; Schroeder J; Schwarzer D
    J Phys Chem B; 2015 Apr; 119(16):5136-44. PubMed ID: 25802098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trans-cis isomerization is responsible for the red-shifted fluorescence in variants of the red fluorescent protein eqFP611.
    Nienhaus K; Nar H; Heilker R; Wiedenmann J; Nienhaus GU
    J Am Chem Soc; 2008 Sep; 130(38):12578-9. PubMed ID: 18761441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kindling fluorescent protein from Anemonia sulcata: dark-state structure at 1.38 A resolution.
    Quillin ML; Anstrom DM; Shu X; O'Leary S; Kallio K; Chudakov DM; Remington SJ
    Biochemistry; 2005 Apr; 44(15):5774-87. PubMed ID: 15823036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 559-to-600 nm shift observed in red fluorescent protein eqFP611 is attributed to cis-trans isomerization of the chromophore in an anionic protein pocket.
    Yan W; Xie D; Zeng J
    Phys Chem Chem Phys; 2009 Aug; 11(29):6042-50. PubMed ID: 19606312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation.
    Tubbs JL; Tainer JA; Getzoff ED
    Biochemistry; 2005 Jul; 44(29):9833-40. PubMed ID: 16026155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal isomerization of the chromoprotein asFP595 and its kindling mutant A143G: QM/MM molecular dynamics simulations.
    Mironov VA; Khrenova MG; Grigorenko BL; Savitsky AP; Nemukhin AV
    J Phys Chem B; 2013 Oct; 117(43):13507-14. PubMed ID: 24079704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collapse and recovery of green fluorescent protein chromophore emission through topological effects.
    Tolbert LM; Baldridge A; Kowalik J; Solntsev KM
    Acc Chem Res; 2012 Feb; 45(2):171-81. PubMed ID: 21861536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single amino acid replacement makes Aequorea victoria fluorescent proteins reversibly photoswitchable.
    Bizzarri R; Serresi M; Cardarelli F; Abbruzzetti S; Campanini B; Viappiani C; Beltram F
    J Am Chem Soc; 2010 Jan; 132(1):85-95. PubMed ID: 19958004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A structural basis for reversible photoswitching of absorbance spectra in red fluorescent protein rsTagRFP.
    Pletnev S; Subach FV; Dauter Z; Wlodawer A; Verkhusha VV
    J Mol Biol; 2012 Mar; 417(3):144-51. PubMed ID: 22310052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic excitations of green fluorescent proteins: modeling solvatochromatic shifts of red fluorescent protein chromophore model compound in aqueous solutions.
    Yan W; Zhang L; Xie D; Zeng J
    J Phys Chem B; 2007 Dec; 111(50):14055-63. PubMed ID: 18044868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 1.7 A crystal structure of Dronpa: a photoswitchable green fluorescent protein.
    Wilmann PG; Turcic K; Battad JM; Wilce MC; Devenish RJ; Prescott M; Rossjohn J
    J Mol Biol; 2006 Nov; 364(2):213-24. PubMed ID: 17010376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide bond trans-cis isomerization and acylimine formation in chromophore maturation of the red fluorescent proteins.
    Ren X; Xie D; Zeng J
    J Phys Chem A; 2011 Sep; 115(36):10129-35. PubMed ID: 21834555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photophysics of the red chromophore of HcRed: evidence for cis-trans isomerization and protonation-state changes.
    Mudalige K; Habuchi S; Goodwin PM; Pai RK; De Schryver F; Cotlet M
    J Phys Chem B; 2010 Apr; 114(13):4678-85. PubMed ID: 20230057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.