These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 21923165)

  • 1. In situ patterning of high-quality crystalline rubrene thin films for high-resolution patterned organic field-effect transistors.
    Lee HM; Kim JJ; Choi JH; Cho SO
    ACS Nano; 2011 Oct; 5(10):8352-6. PubMed ID: 21923165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. n-Channel semiconductor materials design for organic complementary circuits.
    Usta H; Facchetti A; Marks TJ
    Acc Chem Res; 2011 Jul; 44(7):501-10. PubMed ID: 21615105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics.
    Stingelin-Stutzmann N; Smits E; Wondergem H; Tanase C; Blom P; Smith P; de Leeuw D
    Nat Mater; 2005 Aug; 4(8):601-6. PubMed ID: 16025124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foreign Particle Promoted Crystalline Nucleation for Growing High-Quality Ultrathin Rubrene Films.
    Hu X; Wang Z; Zhu X; Zhu T; Zhang X; Dong B; Huang L; Chi L
    Small; 2016 Aug; 12(30):4086-92. PubMed ID: 27335247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-performance correlations in vapor phase deposited self-assembled nanodielectrics for organic field-effect transistors.
    DiBenedetto SA; Frattarelli DL; Facchetti A; Ratner MA; Marks TJ
    J Am Chem Soc; 2009 Aug; 131(31):11080-90. PubMed ID: 19606862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bithiophene-imide-based polymeric semiconductors for field-effect transistors: synthesis, structure-property correlations, charge carrier polarity, and device stability.
    Guo X; Ortiz RP; Zheng Y; Hu Y; Noh YY; Baeg KJ; Facchetti A; Marks TJ
    J Am Chem Soc; 2011 Feb; 133(5):1405-18. PubMed ID: 21207965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterning organic single-crystal transistor arrays.
    Briseno AL; Mannsfeld SC; Ling MM; Liu S; Tseng RJ; Reese C; Roberts ME; Yang Y; Wudl F; Bao Z
    Nature; 2006 Dec; 444(7121):913-7. PubMed ID: 17167482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface engineering: an effective approach toward high-performance organic field-effect transistors.
    Di CA; Liu Y; Yu G; Zhu D
    Acc Chem Res; 2009 Oct; 42(10):1573-83. PubMed ID: 19645474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rubrenes: planar and twisted.
    Paraskar AS; Reddy AR; Patra A; Wijsboom YH; Gidron O; Shimon LJ; Leitus G; Bendikov M
    Chemistry; 2008; 14(34):10639-47. PubMed ID: 18932176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystalline growth of rubrene film enhanced by vertical ordering in cadmium arachidate multilayer substrate.
    Wang CH; Islam AK; Yang YW; Wu TY; Lue JW; Hsu CH; Sinha S; Mukherjee M
    Langmuir; 2013 Mar; 29(12):3957-67. PubMed ID: 23470181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2,6-Diarylnaphtho[1,8-bc:5,4-b'c']dithiophenes as new high-performance semiconductors for organic field-effect transistors.
    Takimiya K; Kunugi Y; Toyoshima Y; Otsubo T
    J Am Chem Soc; 2005 Mar; 127(10):3605-12. PubMed ID: 15755182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ti-doped indium tin oxide thin films for transparent field-effect transistors: control of charge-carrier density and crystalline structure.
    Kim JI; Ji KH; Jang M; Yang H; Choi R; Jeong JK
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2522-8. PubMed ID: 21663320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits.
    Gundlach DJ; Royer JE; Park SK; Subramanian S; Jurchescu OD; Hamadani BH; Moad AJ; Kline RJ; Teague LC; Kirillov O; Richter CA; Kushmerick JG; Richter LJ; Parkin SR; Jackson TN; Anthony JE
    Nat Mater; 2008 Mar; 7(3):216-21. PubMed ID: 18278050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doped Highly Crystalline Organic Films: Toward High-Performance Organic Electronics.
    Sawatzki MF; Kleemann H; Boroujeni BK; Wang SJ; Vahland J; Ellinger F; Leo K
    Adv Sci (Weinh); 2021 Mar; 8(6):2003519. PubMed ID: 33747740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance triisopropylsilylethynyl pentacene transistors via spin coating with a crystallization-assisting layer.
    Choi D; Ahn B; Kim SH; Hong K; Ree M; Park CE
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):117-22. PubMed ID: 21961535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic semiconductors based on [1]benzothieno[3,2-b][1]benzothiophene substructure.
    Takimiya K; Osaka I; Mori T; Nakano M
    Acc Chem Res; 2014 May; 47(5):1493-502. PubMed ID: 24785263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient modification of Cu electrode with nanometer-sized copper tetracyanoquinodimethane for high performance organic field-effect transistors.
    Di CA; Yu G; Liu Y; Guo Y; Wu W; Wei D; Zhu D
    Phys Chem Chem Phys; 2008 May; 10(17):2302-7. PubMed ID: 18414721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-mobility ultrathin semiconducting films prepared by spin coating.
    Mitzi DB; Kosbar LL; Murray CE; Copel M; Afzali A
    Nature; 2004 Mar; 428(6980):299-303. PubMed ID: 15029191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterning organic semiconductors using "dry" poly(dimethylsiloxane) elastomeric stamps for thin film transistors.
    Briseno AL; Roberts M; Ling MM; Moon H; Nemanick EJ; Bao Z
    J Am Chem Soc; 2006 Mar; 128(12):3880-1. PubMed ID: 16551074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured organic semiconductors via directed supramolecular assembly.
    Rancatore BJ; Mauldin CE; Tung SH; Wang C; Hexemer A; Strzalka J; Fréchet JM; Xu T
    ACS Nano; 2010 May; 4(5):2721-9. PubMed ID: 20402495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.