These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Fabrication of transparent, tough, and conductive shape-memory polyurethane films by incorporating a small amount of high-quality graphene. Jung YC; Kim JH; Hayashi T; Kim YA; Endo M; Terrones M; Dresselhaus MS Macromol Rapid Commun; 2012 Apr; 33(8):628-34. PubMed ID: 22328293 [TBL] [Abstract][Full Text] [Related]
5. Large-area graphene films by simple solution casting of edge-selectively functionalized graphite. Bae SY; Jeon IY; Yang J; Park N; Shin HS; Park S; Ruoff RS; Dai L; Baek JB ACS Nano; 2011 Jun; 5(6):4974-80. PubMed ID: 21591691 [TBL] [Abstract][Full Text] [Related]
6. Highly conducting graphene sheets and Langmuir-Blodgett films. Li X; Zhang G; Bai X; Sun X; Wang X; Wang E; Dai H Nat Nanotechnol; 2008 Sep; 3(9):538-42. PubMed ID: 18772914 [TBL] [Abstract][Full Text] [Related]
7. Conversion of self-assembled monolayers into nanocrystalline graphene: structure and electric transport. Turchanin A; Weber D; Büenfeld M; Kisielowski C; Fistul MV; Efetov KB; Weimann T; Stosch R; Mayer J; Gölzhäuser A ACS Nano; 2011 May; 5(5):3896-904. PubMed ID: 21491948 [TBL] [Abstract][Full Text] [Related]
8. Metallicity retained by covalent functionalization of graphene with phenyl groups. Tang P; Chen P; Wu J; Kang F; Li J; Rubio A; Duan W Nanoscale; 2013 Aug; 5(16):7537-43. PubMed ID: 23836075 [TBL] [Abstract][Full Text] [Related]
9. Modulating the charge-transfer enhancement in GERS using an electrical field under vacuum and an n/p-doping atmosphere. Xu H; Chen Y; Xu W; Zhang H; Kong J; Dresselhaus MS; Zhang J Small; 2011 Oct; 7(20):2945-52. PubMed ID: 21901822 [TBL] [Abstract][Full Text] [Related]
10. Electrochemistry of individual monolayer graphene sheets. Li W; Tan C; Lowe MA; Abruña HD; Ralph DC ACS Nano; 2011 Mar; 5(3):2264-70. PubMed ID: 21332139 [TBL] [Abstract][Full Text] [Related]
12. Functionalized single graphene sheets derived from splitting graphite oxide. Schniepp HC; Li JL; McAllister MJ; Sai H; Herrera-Alonso M; Adamson DH; Prud'homme RK; Car R; Saville DA; Aksay IA J Phys Chem B; 2006 May; 110(17):8535-9. PubMed ID: 16640401 [TBL] [Abstract][Full Text] [Related]
13. An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid. Chen D; Li L; Guo L Nanotechnology; 2011 Aug; 22(32):325601. PubMed ID: 21757797 [TBL] [Abstract][Full Text] [Related]
14. Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors. Su CY; Xu Y; Zhang W; Zhao J; Liu A; Tang X; Tsai CH; Huang Y; Li LJ ACS Nano; 2010 Sep; 4(9):5285-92. PubMed ID: 20718442 [TBL] [Abstract][Full Text] [Related]
15. Conductive junctions with parallel graphene sheets. Zheng X; Ke SH; Yang W J Chem Phys; 2010 Mar; 132(11):114703. PubMed ID: 20331312 [TBL] [Abstract][Full Text] [Related]
16. Magnetothermoelectric transport in modulated and unmodulated graphene. Nasir R; Sabeeh K J Phys Condens Matter; 2011 Sep; 23(37):375301. PubMed ID: 21881170 [TBL] [Abstract][Full Text] [Related]
17. Binding of pollutant aromatics on carbon nanotubes and graphite. Ramraj A; Hillier IH J Chem Inf Model; 2010 Apr; 50(4):585-8. PubMed ID: 20356088 [TBL] [Abstract][Full Text] [Related]
18. Approaching ballistic transport in suspended graphene. Du X; Skachko I; Barker A; Andrei EY Nat Nanotechnol; 2008 Aug; 3(8):491-5. PubMed ID: 18685637 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical gate-controlled charge transport in graphene in ionic liquid and aqueous solution. Chen F; Qing Q; Xia J; Li J; Tao N J Am Chem Soc; 2009 Jul; 131(29):9908-9. PubMed ID: 19572712 [TBL] [Abstract][Full Text] [Related]
20. Second-order overtone and combination Raman modes of graphene layers in the range of 1690-2150 cm(-1). Cong C; Yu T; Saito R; Dresselhaus GF; Dresselhaus MS ACS Nano; 2011 Mar; 5(3):1600-5. PubMed ID: 21344883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]