BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21923408)

  • 1. The microbial habitability of weathered volcanic glass inferred from continuous sensing techniques.
    Bagshaw EA; Cockell CS; Magan N; Wadham JL; Venugopalan T; Sun T; Mowlem M; Croxford AJ
    Astrobiology; 2011 Sep; 11(7):651-64. PubMed ID: 21923408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alteration textures in terrestrial volcanic glass and the associated bacterial community.
    Cockell CS; Olsson-Francis K; Herrera A; Meunier A
    Geobiology; 2009 Jan; 7(1):50-65. PubMed ID: 19200146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Following the kinetics: iron-oxidizing microbial mats in cold icelandic volcanic habitats and their rock-associated carbonaceous signature.
    Cockell CS; Kelly LC; Summers S; Marteinsson V
    Astrobiology; 2011 Sep; 11(7):679-94. PubMed ID: 21895443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial diversity of weathered terrestrial Icelandic volcanic glasses.
    Kelly LC; Cockell CS; Piceno YM; Andersen GL; Thorsteinsson T; Marteinsson V
    Microb Ecol; 2010 Nov; 60(4):740-52. PubMed ID: 20473490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring microbial diversity in volcanic environments: a review of methods in DNA extraction.
    Herrera A; Cockell CS
    J Microbiol Methods; 2007 Jul; 70(1):1-12. PubMed ID: 17540467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial diversity of terrestrial crystalline volcanic rocks, Iceland.
    Kelly LC; Cockell CS; Herrera-Belaroussi A; Piceno Y; Andersen G; DeSantis T; Brodie E; Thorsteinsson T; Marteinsson V; Poly F; LeRoux X
    Microb Ecol; 2011 Jul; 62(1):69-79. PubMed ID: 21584756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cryptoendolithic community in volcanic glass.
    Herrera A; Cockell CS; Self S; Blaxter M; Reitner J; Thorsteinsson T; Arp G; Dröse W; Tindle AG
    Astrobiology; 2009 May; 9(4):369-81. PubMed ID: 19519213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The microbe-mineral environment and gypsum neogenesis in a weathered polar evaporite.
    Cockell CS; Osinski GR; Banerjee NR; Howard KT; Gilmour I; Watson JS
    Geobiology; 2010 Sep; 8(4):293-308. PubMed ID: 20456500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania.
    Alain K; Holler T; Musat F; Elvert M; Treude T; Krüger M
    Environ Microbiol; 2006 Apr; 8(4):574-90. PubMed ID: 16584470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geobiology of a microbial endolithic community in the Yellowstone geothermal environment.
    Walker JJ; Spear JR; Pace NR
    Nature; 2005 Apr; 434(7036):1011-4. PubMed ID: 15846344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared spectroscopic characterization of organic matter associated with microbial bioalteration textures in basaltic glass.
    Preston LJ; Izawa MR; Banerjee NR
    Astrobiology; 2011 Sep; 11(7):585-99. PubMed ID: 21848422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volcano-ice interaction as a microbial habitat on Earth and Mars.
    Cousins CR; Crawford IA
    Astrobiology; 2011 Sep; 11(7):695-710. PubMed ID: 21877914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Low-Diversity Microbiota Inhabits Extreme Terrestrial Basaltic Terrains and Their Fumaroles: Implications for the Exploration of Mars.
    Cockell CS; Harrison JP; Stevens AH; Payler SJ; Hughes SS; Kobs Nawotniak SE; Brady AL; Elphic RC; Haberle CW; Sehlke A; Beaton KH; Abercromby AFJ; Schwendner P; Wadsworth J; Landenmark H; Cane R; Dickinson AW; Nicholson N; Perera L; Lim DSS
    Astrobiology; 2019 Mar; 19(3):284-299. PubMed ID: 30840501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colonization of overlaying water by bacteria from dry river sediments.
    Fazi S; Amalfitano S; Piccini C; Zoppini A; Puddu A; Pernthaler J
    Environ Microbiol; 2008 Oct; 10(10):2760-72. PubMed ID: 18643927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The diversity and abundance of bacteria inhabiting seafloor lavas positively correlate with rock alteration.
    Santelli CM; Edgcomb VP; Bach W; Edwards KJ
    Environ Microbiol; 2009 Jan; 11(1):86-98. PubMed ID: 18783382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis.
    Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M
    Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Rømø Basin, Wadden Sea.
    Musat N; Werner U; Knittel K; Kolb S; Dodenhof T; van Beusekom JE; de Beer D; Dubilier N; Amann R
    Syst Appl Microbiol; 2006 Jun; 29(4):333-48. PubMed ID: 16431068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial community diversity in seafloor basalt from the Arctic spreading ridges.
    Lysnes K; Thorseth IH; Steinsbu BO; Øvreås L; Torsvik T; Pedersen RB
    FEMS Microbiol Ecol; 2004 Nov; 50(3):213-30. PubMed ID: 19712362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteria beneath the West Antarctic ice sheet.
    Lanoil B; Skidmore M; Priscu JC; Han S; Foo W; Vogel SW; Tulaczyk S; Engelhardt H
    Environ Microbiol; 2009 Mar; 11(3):609-15. PubMed ID: 19278447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of freeze-thaw cycles on anaerobic microbial processes in an Arctic intertidal mud flat.
    Sawicka JE; Robador A; Hubert C; Jørgensen BB; Brüchert V
    ISME J; 2010 Apr; 4(4):585-94. PubMed ID: 20033071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.