BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21924238)

  • 1. A small unstructured nucleic acid disrupts a trinucleotide repeat hairpin.
    Avila-Figueroa A; Cattie D; Delaney S
    Biochem Biophys Res Commun; 2011 Oct; 413(4):532-6. PubMed ID: 21924238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of even/odd trinucleotide repeat sequences modulates persistence of non-B conformations and conversion to duplex.
    Figueroa AA; Cattie D; Delaney S
    Biochemistry; 2011 May; 50(21):4441-50. PubMed ID: 21526744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro repair of DNA hairpins containing various numbers of CAG/CTG trinucleotide repeats.
    Zhang T; Huang J; Gu L; Li GM
    DNA Repair (Amst); 2012 Feb; 11(2):201-9. PubMed ID: 22041023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic studies of hairpin to duplex conversion for trinucleotide repeat sequences.
    Avila Figueroa A; Delaney S
    J Biol Chem; 2010 May; 285(19):14648-57. PubMed ID: 20228068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incidence and persistence of 8-oxo-7,8-dihydroguanine within a hairpin intermediate exacerbates a toxic oxidation cycle associated with trinucleotide repeat expansion.
    Jarem DA; Wilson NR; Schermerhorn KM; Delaney S
    DNA Repair (Amst); 2011 Aug; 10(8):887-96. PubMed ID: 21727036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Resolution NMR Structures of Intrastrand Hairpins Formed by CTG Trinucleotide Repeats.
    Wan L; He A; Li J; Guo P; Han D
    ACS Chem Neurosci; 2024 Feb; 15(4):868-876. PubMed ID: 38319692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique Length-Dependent Biophysical Properties of Repetitive DNA.
    Huang J; Delaney S
    J Phys Chem B; 2016 May; 120(18):4195-203. PubMed ID: 27115707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence-Dependent Effects of Monovalent Cations on the Structural Dynamics of Trinucleotide-Repeat DNA Hairpins.
    Mitchell ML; Leveille MP; Solecki RS; Tran T; Cannon B
    J Phys Chem B; 2018 Dec; 122(50):11841-11851. PubMed ID: 30441902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational energetics of stable and metastable states formed by DNA triplet repeat oligonucleotides: implications for triplet expansion diseases.
    Völker J; Makube N; Plum GE; Klump HH; Breslauer KJ
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14700-5. PubMed ID: 12417759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frustration Between Preferred States of Complementary Trinucleotide Repeat DNA Hairpins Anticorrelates with Expansion Disease Propensity.
    Xu P; Zhang J; Pan F; Mahn C; Roland C; Sagui C; Weninger K
    J Mol Biol; 2023 May; 435(10):168086. PubMed ID: 37024008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MutSβ promotes trinucleotide repeat expansion by recruiting DNA polymerase β to nascent (CAG)n or (CTG)n hairpins for error-prone DNA synthesis.
    Guo J; Gu L; Leffak M; Li GM
    Cell Res; 2016 Jul; 26(7):775-86. PubMed ID: 27255792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of strand slippage in DNA hairpins formed by CAG repeats: roles of sequence parity and trinucleotide interrupts.
    Xu P; Pan F; Roland C; Sagui C; Weninger K
    Nucleic Acids Res; 2020 Mar; 48(5):2232-2245. PubMed ID: 31974547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanism of resolving trinucleotide repeat hairpin by helicases.
    Qiu Y; Niu H; Vukovic L; Sung P; Myong S
    Structure; 2015 Jun; 23(6):1018-27. PubMed ID: 26004439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-Range Hairpin Slippage Reconfiguration Dynamics in Trinucleotide Repeat Sequences.
    Ni CW; Wei YJ; Shen YI; Lee IR
    J Phys Chem Lett; 2019 Jul; 10(14):3985-3990. PubMed ID: 31241956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incision-dependent and error-free repair of (CAG)(n)/(CTG)(n) hairpins in human cell extracts.
    Hou C; Chan NL; Gu L; Li GM
    Nat Struct Mol Biol; 2009 Aug; 16(8):869-75. PubMed ID: 19597480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replication-dependent instability at (CTG) x (CAG) repeat hairpins in human cells.
    Liu G; Chen X; Bissler JJ; Sinden RR; Leffak M
    Nat Chem Biol; 2010 Sep; 6(9):652-9. PubMed ID: 20676085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Base excision repair of oxidative DNA damage coupled with removal of a CAG repeat hairpin attenuates trinucleotide repeat expansion.
    Xu M; Lai Y; Torner J; Zhang Y; Zhang Z; Liu Y
    Nucleic Acids Res; 2014 Apr; 42(6):3675-91. PubMed ID: 24423876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Werner syndrome protein promotes CAG/CTG repeat stability by resolving large (CAG)(n)/(CTG)(n) hairpins.
    Chan NL; Hou C; Zhang T; Yuan F; Machwe A; Huang J; Orren DK; Gu L; Li GM
    J Biol Chem; 2012 Aug; 287(36):30151-6. PubMed ID: 22787159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligodeoxynucleotide binding to (CTG) · (CAG) microsatellite repeats inhibits replication fork stalling, hairpin formation, and genome instability.
    Liu G; Chen X; Leffak M
    Mol Cell Biol; 2013 Feb; 33(3):571-81. PubMed ID: 23166299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordinated processing of 3' slipped (CAG)n/(CTG)n hairpins by DNA polymerases β and δ preferentially induces repeat expansions.
    Chan NL; Guo J; Zhang T; Mao G; Hou C; Yuan F; Huang J; Zhang Y; Wu J; Gu L; Li GM
    J Biol Chem; 2013 May; 288(21):15015-22. PubMed ID: 23585564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.