BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 21924751)

  • 1. Accelerometer validity and placement for detection of changes in physical activity in dogs under controlled conditions on a treadmill.
    Preston T; Baltzer W; Trost S
    Res Vet Sci; 2012 Aug; 93(1):412-6. PubMed ID: 21924751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The method of attachment influences accelerometer-based activity data in dogs.
    Martin KW; Olsen AM; Duncan CG; Duerr FM
    BMC Vet Res; 2017 Feb; 13(1):48. PubMed ID: 28187763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination and application of cut points for accelerometer-based activity counts of activities with differing intensity in pet dogs.
    Michel KE; Brown DC
    Am J Vet Res; 2011 Jul; 72(7):866-70. PubMed ID: 21728845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of pedometer and accelerometer accuracy under controlled conditions.
    Le Masurier GC; Tudor-Locke C
    Med Sci Sports Exerc; 2003 May; 35(5):867-71. PubMed ID: 12750599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of an accelerometer for at-home monitoring of spontaneous activity in dogs.
    Hansen BD; Lascelles BD; Keene BW; Adams AK; Thomson AE
    Am J Vet Res; 2007 May; 68(5):468-75. PubMed ID: 17472445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliability of ground reaction forces measured on a treadmill system in healthy dogs.
    Bockstahler BA; Skalicky M; Peham C; Müller M; Lorinson D
    Vet J; 2007 Mar; 173(2):373-8. PubMed ID: 16324859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of an open source method for calculating physical activity in dogs from harness and collar based sensors.
    Westgarth C; Ladha C
    BMC Vet Res; 2017 Nov; 13(1):322. PubMed ID: 29116008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry.
    Kumahara H; Schutz Y; Ayabe M; Yoshioka M; Yoshitake Y; Shindo M; Ishii K; Tanaka H
    Br J Nutr; 2004 Feb; 91(2):235-43. PubMed ID: 14756909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors affecting Caltrac and Calcount accelerometer output.
    Balogun JA; Amusa LO; Onyewadume IU
    Phys Ther; 1988 Oct; 68(10):1500-4. PubMed ID: 3174831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a commercial accelerometer (Tritrac-R3 D) to measure energy expenditure during ambulation.
    Sherman WM; Morris DM; Kirby TE; Petosa RA; Smith BA; Frid DJ; Leenders N
    Int J Sports Med; 1998 Jan; 19(1):43-7. PubMed ID: 9506799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equivalence of accelerometer data for walking and running: treadmill versus on land.
    Vanhelst J; Zunquin G; Theunynck D; Mikulovic J; Bui-Xuan G; Beghin L
    J Sports Sci; 2009 May; 27(7):669-75. PubMed ID: 19424900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration of accelerometer output for ambulatory adults with multiple sclerosis.
    Motl RW; Snook EM; Agiovlasitis S; Suh Y
    Arch Phys Med Rehabil; 2009 Oct; 90(10):1778-84. PubMed ID: 19801071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a wearable body monitoring device during treadmill walking and jogging in patients with fibromyalgia syndrome.
    Munguía-Izquierdo D; Santalla A; Legaz-Arrese A
    Arch Phys Med Rehabil; 2012 Jan; 93(1):115-22. PubMed ID: 22200390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A validation of a physical activity monitor for young and older adults.
    Nichols JF; Patterson P; Early T
    Can J Sport Sci; 1992 Dec; 17(4):299-303. PubMed ID: 1330268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a digitally integrated accelerometer-based activity monitor for the measurement of activity in cats.
    Lascelles BD; Hansen BD; Thomson A; Pierce CC; Boland E; Smith ES
    Vet Anaesth Analg; 2008 Mar; 35(2):173-83. PubMed ID: 17927675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ability of different physical activity monitors to detect movement during treadmill walking.
    Leenders NY; Nelson TE; Sherman WM
    Int J Sports Med; 2003 Jan; 24(1):43-50. PubMed ID: 12582951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of energy expenditure for physical activity using a triaxial accelerometer.
    Bouten CV; Westerterp KR; Verduin M; Janssen JD
    Med Sci Sports Exerc; 1994 Dec; 26(12):1516-23. PubMed ID: 7869887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behaviors in rhesus monkeys (Macaca mulatta) associated with activity counts measured by accelerometer.
    Papailiou A; Sullivan E; Cameron JL
    Am J Primatol; 2008 Feb; 70(2):185-90. PubMed ID: 17854071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The accuracy of the TriTrac-R3D accelerometer to estimate energy expenditure.
    Jakicic JM; Winters C; Lagally K; Ho J; Robertson RJ; Wing RR
    Med Sci Sports Exerc; 1999 May; 31(5):747-54. PubMed ID: 10331898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A treadmill ramp protocol using simultaneous changes in speed and grade.
    Porszasz J; Casaburi R; Somfay A; Woodhouse LJ; Whipp BJ
    Med Sci Sports Exerc; 2003 Sep; 35(9):1596-603. PubMed ID: 12972882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.