BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 21924897)

  • 1. Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues.
    Xu RK; Xiao SC; Yuan JH; Zhao AZ
    Bioresour Technol; 2011 Nov; 102(22):10293-8. PubMed ID: 21924897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Adsorption of methylene blue from water by the biochars generated from crop residues].
    Xu RK; Zhao AZ; Xiao SC; Yuan JH
    Huan Jing Ke Xue; 2012 Jan; 33(1):142-6. PubMed ID: 22452202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of Cr(III) from acidic solutions by crop straw derived biochars.
    Pan J; Jiang J; Xu R
    J Environ Sci (China); 2013 Oct; 25(10):1957-65. PubMed ID: 24494481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of Cu(II) from acidic electroplating effluent by biochars generated from crop straws.
    Tong X; Xu R
    J Environ Sci (China); 2013 Apr; 25(4):652-8. PubMed ID: 23923773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach.
    Singh KP; Gupta S; Singh AK; Sinha S
    J Hazard Mater; 2011 Feb; 186(2-3):1462-73. PubMed ID: 21211903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste.
    Sewu DD; Boakye P; Woo SH
    Bioresour Technol; 2017 Jan; 224():206-213. PubMed ID: 27839858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water.
    Ahmad M; Lee SS; Dou X; Mohan D; Sung JK; Yang JE; Ok YS
    Bioresour Technol; 2012 Aug; 118():536-44. PubMed ID: 22721877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption.
    Saeed A; Sharif M; Iqbal M
    J Hazard Mater; 2010 Jul; 179(1-3):564-72. PubMed ID: 20381962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass (Boehmeria nivea (L.) Gaud.): Characterization and application for crystal violet removal.
    Tan XF; Liu YG; Gu YL; Liu SB; Zeng GM; Cai X; Hu XJ; Wang H; Liu SM; Jiang LH
    J Environ Manage; 2016 Dec; 184(Pt 1):85-93. PubMed ID: 27591848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products.
    Pellera FM; Giannis A; Kalderis D; Anastasiadou K; Stegmann R; Wang JY; Gidarakos E
    J Environ Manage; 2012 Apr; 96(1):35-42. PubMed ID: 22208396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochars derived from various crop straws: characterization and Cd(II) removal potential.
    Sun J; Lian F; Liu Z; Zhu L; Song Z
    Ecotoxicol Environ Saf; 2014 Aug; 106():226-31. PubMed ID: 24859708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and mechanisms of hydrogen sulfide adsorption by biochars.
    Shang G; Shen G; Liu L; Chen Q; Xu Z
    Bioresour Technol; 2013 Apr; 133():495-9. PubMed ID: 23455220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of Acid Violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull.
    Thinakaran N; Baskaralingam P; Pulikesi M; Panneerselvam P; Sivanesan S
    J Hazard Mater; 2008 Mar; 151(2-3):316-22. PubMed ID: 17689864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equilibrium and kinetic studies of methyl violet sorption by agricultural waste.
    Hameed BH
    J Hazard Mater; 2008 Jun; 154(1-3):204-12. PubMed ID: 18023971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures.
    Chen B; Chen Z
    Chemosphere; 2009 Jun; 76(1):127-33. PubMed ID: 19282020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient removal of crystal violet from aqueous solutions with Centaurea stem as a novel biodegradable bioadsorbent using response surface methodology and simulated annealing: Kinetic, isotherm and thermodynamic studies.
    Naderi P; Shirani M; Semnani A; Goli A
    Ecotoxicol Environ Saf; 2018 Nov; 163():372-381. PubMed ID: 30059882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal and recovery of hazardous triphenylmethane dye, Methyl Violet through adsorption over granulated waste materials.
    Mittal A; Gajbe V; Mittal J
    J Hazard Mater; 2008 Jan; 150(2):364-75. PubMed ID: 17543448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Active carbon from Thalia dealbata residues: its preparation and adsorption performance to crystal violet].
    Chu SY; Yang M; Xiao JB; Zhang J; Zhu YP; Yan XJ; Tian GM
    Ying Yong Sheng Tai Xue Bao; 2013 Jun; 24(6):1693-8. PubMed ID: 24066559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies.
    Sun L; Wan S; Luo W
    Bioresour Technol; 2013 Jul; 140():406-13. PubMed ID: 23714096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of Basic Violet 14 in aqueous solutions using KMnO4-modified activated carbon.
    Shi Q; Zhang J; Zhang C; Nie W; Zhang B; Zhang H
    J Colloid Interface Sci; 2010 Mar; 343(1):188-93. PubMed ID: 20036370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.