These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 21924899)

  • 41. Biological chromium(VI) reduction in the cathode of a microbial fuel cell.
    Tandukar M; Huber SJ; Onodera T; Pavlostathis SG
    Environ Sci Technol; 2009 Nov; 43(21):8159-65. PubMed ID: 19924938
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.
    Wang L; Chen Y; Ye Y; Lu B; Zhu S; Shen S
    Water Sci Technol; 2011; 63(3):440-8. PubMed ID: 21278465
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Copper recovery combined with electricity production in a microbial fuel cell.
    Heijne AT; Liu F; Weijden Rv; Weijma J; Buisman CJ; Hamelers HV
    Environ Sci Technol; 2010 Jun; 44(11):4376-81. PubMed ID: 20462261
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells.
    Wang X; Gao N; Zhou Q; Dong H; Yu H; Feng Y
    Bioresour Technol; 2013 Sep; 144():632-6. PubMed ID: 23890977
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of microbial fuel cell coupled with aeration chamber and bio-cathode for organic matter and nitrogen removal from synthetic domestic wastewater.
    Cha J; Kim C; Choi S; Lee G; Chen G; Lee T
    Water Sci Technol; 2009; 60(6):1409-18. PubMed ID: 19759443
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode.
    Sun J; Bi Z; Hou B; Cao YQ; Hu YY
    Water Res; 2011 Jan; 45(1):283-91. PubMed ID: 20727567
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A microbial fuel cell equipped with a biocathode for organic removal and denitrification.
    Lefebvre O; Al-Mamun A; Ng HY
    Water Sci Technol; 2008; 58(4):881-5. PubMed ID: 18776625
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anaerobic/aerobic conditions and biostimulation for enhanced chlorophenols degradation in biocathode microbial fuel cells.
    Huang L; Shi Y; Wang N; Dong Y
    Biodegradation; 2014 Jul; 25(4):615-32. PubMed ID: 24902896
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improved energy output levels from small-scale Microbial Fuel Cells.
    Ieropoulos I; Greenman J; Melhuish C
    Bioelectrochemistry; 2010 Apr; 78(1):44-50. PubMed ID: 19540172
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydrogen production with a microbial biocathode.
    Rozendal RA; Jeremiasse AW; Hamelers HV; Buisman CJ
    Environ Sci Technol; 2008 Jan; 42(2):629-34. PubMed ID: 18284174
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The anode potential regulates bacterial activity in microbial fuel cells.
    Aelterman P; Freguia S; Keller J; Verstraete W; Rabaey K
    Appl Microbiol Biotechnol; 2008 Mar; 78(3):409-18. PubMed ID: 18193419
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a single-chamber microbial fuel cell.
    Nam JY; Kim HW; Lim KH; Shin HS
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S33-7. PubMed ID: 19394820
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioelectrochemical systems: an outlook for practical applications.
    Sleutels TH; Ter Heijne A; Buisman CJ; Hamelers HV
    ChemSusChem; 2012 Jun; 5(6):1012-9. PubMed ID: 22674691
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrochemical growth of Acidithiobacillus ferrooxidans on a graphite electrode for obtaining a biocathode for direct electrocatalytic reduction of oxygen.
    Carbajosa S; Malki M; Caillard R; Lopez MF; Palomares FJ; Martín-Gago JA; Rodríguez N; Amils R; Fernández VM; De Lacey AL
    Biosens Bioelectron; 2010 Oct; 26(2):877-80. PubMed ID: 20678913
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Performance of planar and cylindrical carbon electrodes at sedimentary microbial fuel cells.
    Sacco NJ; Figuerola EL; Pataccini G; Bonetto MC; Erijman L; Cortón E
    Bioresour Technol; 2012 Dec; 126():328-35. PubMed ID: 23142927
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes.
    Biffinger JC; Pietron J; Ray R; Little B; Ringeisen BR
    Biosens Bioelectron; 2007 Mar; 22(8):1672-9. PubMed ID: 16939710
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microbial electricity generation of diversified carbonaceous electrodes under variable mediators.
    Park IH; Gnana Kumar G; Kim AR; Kim P; Suk Nahm K
    Bioelectrochemistry; 2011 Feb; 80(2):99-104. PubMed ID: 20655812
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Separator characteristics for increasing performance of microbial fuel cells.
    Zhang X; Cheng S; Wang X; Huang X; Logan BE
    Environ Sci Technol; 2009 Nov; 43(21):8456-61. PubMed ID: 19924984
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bread-derived 3D macroporous carbon foams as high performance free-standing anode in microbial fuel cells.
    Zhang L; He W; Yang J; Sun J; Li H; Han B; Zhao S; Shi Y; Feng Y; Tang Z; Liu S
    Biosens Bioelectron; 2018 Dec; 122():217-223. PubMed ID: 30265972
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biochar as a sustainable electrode material for electricity production in microbial fuel cells.
    Huggins T; Wang H; Kearns J; Jenkins P; Ren ZJ
    Bioresour Technol; 2014 Apr; 157():114-9. PubMed ID: 24534792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.