BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21925248)

  • 1. Gene transport and expression by arginine-rich cell-penetrating peptides in Paramecium.
    Dai YH; Liu BR; Chiang HJ; Lee HJ
    Gene; 2011 Dec; 489(2):89-97. PubMed ID: 21925248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A gene delivery system for insect cells mediated by arginine-rich cell-penetrating peptides.
    Chen YJ; Liu BR; Dai YH; Lee CY; Chan MH; Chen HH; Chiang HJ; Lee HJ
    Gene; 2012 Feb; 493(2):201-10. PubMed ID: 22173105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arginine-rich cell-penetrating peptides deliver gene into living human cells.
    Liu BR; Lin MD; Chiang HJ; Lee HJ
    Gene; 2012 Aug; 505(1):37-45. PubMed ID: 22669044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmid DNA delivery by arginine-rich cell-penetrating peptides containing unnatural amino acids.
    Kato T; Yamashita H; Misawa T; Nishida K; Kurihara M; Tanaka M; Demizu Y; Oba M
    Bioorg Med Chem; 2016 Jun; 24(12):2681-7. PubMed ID: 27132868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delivery of nucleic acids, proteins, and nanoparticles by arginine-rich cell-penetrating peptides in rotifers.
    Liu BR; Liou JS; Chen YJ; Huang YW; Lee HJ
    Mar Biotechnol (NY); 2013 Oct; 15(5):584-95. PubMed ID: 23715807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three Arginine-Rich Cell-Penetrating Peptides Facilitate Cellular Internalization of Red-Emitting Quantum Dots.
    Liu BR; Chen HH; Chan MH; Huang YW; Aronstam RS; Lee HJ
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2067-78. PubMed ID: 26413622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-Surface Interactions on Arginine-Rich Cell-Penetrating Peptides Allow for Multiplex Modes of Internalization.
    Futaki S; Nakase I
    Acc Chem Res; 2017 Oct; 50(10):2449-2456. PubMed ID: 28910080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A gene delivery system for human cells mediated by both a cell-penetrating peptide and a piggyBac transposase.
    Lee CY; Li JF; Liou JS; Charng YC; Huang YW; Lee HJ
    Biomaterials; 2011 Sep; 32(26):6264-76. PubMed ID: 21636125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent attachment of cyclic TAT peptides to GFP results in protein delivery into live cells with immediate bioavailability.
    Nischan N; Herce HD; Natale F; Bohlke N; Budisa N; Cardoso MC; Hackenberger CP
    Angew Chem Int Ed Engl; 2015 Feb; 54(6):1950-3. PubMed ID: 25521313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides.
    Gautam A; Sharma M; Vir P; Chaudhary K; Kapoor P; Kumar R; Nath SK; Raghava GP
    Eur J Pharm Biopharm; 2015 Jan; 89():93-106. PubMed ID: 25459448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular delivery of quantum dots mediated by a histidine- and arginine-rich HR9 cell-penetrating peptide through the direct membrane translocation mechanism.
    Liu BR; Huang YW; Winiarz JG; Chiang HJ; Lee HJ
    Biomaterials; 2011 May; 32(13):3520-37. PubMed ID: 21329975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a Short Cell-Penetrating Peptide from Bovine Lactoferricin for Intracellular Delivery of DNA in Human A549 Cells.
    Liu BR; Huang YW; Aronstam RS; Lee HJ
    PLoS One; 2016; 11(3):e0150439. PubMed ID: 26942714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the importance of electrostatic interactions between cell penetrating peptides and membranes: a pathway toward tumor cell selectivity?
    Jobin ML; Alves ID
    Biochimie; 2014 Dec; 107 Pt A():154-9. PubMed ID: 25107405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-penetrating peptides (CPPs) as a vector for the delivery of siRNAs into cells.
    Nakase I; Tanaka G; Futaki S
    Mol Biosyst; 2013 May; 9(5):855-61. PubMed ID: 23306408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arginine-rich peptides: methods of translocation through biological membranes.
    Futaki S; Hirose H; Nakase I
    Curr Pharm Des; 2013; 19(16):2863-8. PubMed ID: 23140459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge Type, Charge Spacing, and Hydrophobicity of Arginine-Rich Cell-Penetrating Peptides Dictate Gene Transfection.
    Alhakamy NA; Dhar P; Berkland CJ
    Mol Pharm; 2016 Mar; 13(3):1047-57. PubMed ID: 26878305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct transduction modes of arginine-rich cell-penetrating peptides for cargo delivery into tumor cells.
    Ma DX; Shi NQ; Qi XR
    Int J Pharm; 2011 Oct; 419(1-2):200-8. PubMed ID: 21843610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current Understanding of Physicochemical Mechanisms for Cell Membrane Penetration of Arginine-rich Cell Penetrating Peptides: Role of Glycosaminoglycan Interactions.
    Takechi-Haraya Y; Saito H
    Curr Protein Pept Sci; 2018; 19(6):623-630. PubMed ID: 29332576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico and experimental validation of a new modified arginine-rich cell penetrating peptide for plasmid DNA delivery.
    Mahjoubin-Tehran M; Aghaee-Bakhtiari SH; Sahebkar A; Oskuee RK; Kesharwani P; Jalili A
    Int J Pharm; 2022 Aug; 624():122005. PubMed ID: 35817271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery.
    Upadhya A; Sangave PC
    J Pept Sci; 2016 Oct; 22(10):647-659. PubMed ID: 27723187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.