These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 21925508)

  • 1. In vitro evolved non-aggregating and thermostable lipase: structural and thermodynamic investigation.
    Kamal MZ; Ahmad S; Molugu TR; Vijayalakshmi A; Deshmukh MV; Sankaranarayanan R; Rao NM
    J Mol Biol; 2011 Oct; 413(3):726-41. PubMed ID: 21925508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase.
    Acharya P; Rajakumara E; Sankaranarayanan R; Rao NM
    J Mol Biol; 2004 Aug; 341(5):1271-81. PubMed ID: 15321721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight.
    Ahmad S; Kamal MZ; Sankaranarayanan R; Rao NM
    J Mol Biol; 2008 Aug; 381(2):324-40. PubMed ID: 18599073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability curves of laboratory evolved thermostable mutants of a Bacillus subtilis lipase.
    Kamal MZ; Ahmad S; Yedavalli P; Rao NM
    Biochim Biophys Acta; 2010 Sep; 1804(9):1850-6. PubMed ID: 20599630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for the remarkable stability of Bacillus subtilis lipase (Lip A) at low pH.
    Rajakumara E; Acharya P; Ahmad S; Sankaranaryanan R; Rao NM
    Biochim Biophys Acta; 2008 Feb; 1784(2):302-11. PubMed ID: 18053819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysical characterization of mutants of Bacillus subtilis lipase evolved for thermostability: factors contributing to increased activity retention.
    Augustyniak W; Brzezinska AA; Pijning T; Wienk H; Boelens R; Dijkstra BW; Reetz MT
    Protein Sci; 2012 Apr; 21(4):487-97. PubMed ID: 22267088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallization and preliminary X-ray crystallographic investigations on several thermostable forms of a Bacillus subtilis lipase.
    Rajakumara E; Acharya P; Ahmad S; Shanmugam VM; Rao NM; Sankaranarayanan R
    Acta Crystallogr D Biol Crystallogr; 2004 Jan; 60(Pt 1):160-2. PubMed ID: 14684916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinatorial reshaping of a lipase structure for thermostability: additive role of surface stabilizing single point mutations.
    Kumar R; Singh R; Kaur J
    Biochem Biophys Res Commun; 2014 May; 447(4):626-32. PubMed ID: 24751523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures.
    Kumar V; Yedavalli P; Gupta V; Rao NM
    Protein Eng Des Sel; 2014 Mar; 27(3):73-82. PubMed ID: 24402332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally denatured state determines refolding in lipase: mutational analysis.
    Ahmad S; Rao NM
    Protein Sci; 2009 Jun; 18(6):1183-96. PubMed ID: 19472328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Relation Between Lipase Thermostability and Dynamics of Hydrogen Bond and Hydrogen Bond Network Based on Long Time Molecular Dynamics Simulation.
    Zhang L; Ding Y
    Protein Pept Lett; 2017; 24(7):643-648. PubMed ID: 28464764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ¹H, ¹³C and ¹⁵N resonance assignments of wild-type Bacillus subtilis Lipase A and its mutant evolved towards thermostability.
    Augustyniak W; Wienk H; Boelens R; Reetz MT
    Biomol NMR Assign; 2013 Oct; 7(2):249-52. PubMed ID: 22996591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability studies on a lipase from Bacillus subtilis in guanidinium chloride.
    Acharya P; Rao NM
    J Protein Chem; 2003 Jan; 22(1):51-60. PubMed ID: 12739898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the thermostability and activity of Bacillus subtilis lipase mutants: insights from molecular dynamics simulations.
    Singh B; Bulusu G; Mitra A
    J Phys Chem B; 2015 Jan; 119(2):392-409. PubMed ID: 25495458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design of K173A substitution enhances thermostability coupled with catalytic activity of Enterobacter sp. Bn12 lipase.
    Farrokh P; Yakhchali B; Karkhane AA
    J Mol Microbiol Biotechnol; 2014; 24(4):262-9. PubMed ID: 25277599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Point mutation Gln121-Arg increased temperature optima of Bacillus lipase (1.4 subfamily) by fifteen degrees.
    Goomber S; Kumar R; Singh R; Mishra N; Kaur J
    Int J Biol Macromol; 2016 Jul; 88():507-14. PubMed ID: 27083848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effects of One Amino Acid Substitutions at the C-Terminal Region of Thermostable L2 Lipase by Computational and Experimental Approach.
    Sani HA; Shariff FM; Rahman RNZRA; Leow TC; Salleh AB
    Mol Biotechnol; 2018 Jan; 60(1):1-11. PubMed ID: 29058211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of N terminus long range non covalent interactions shifted temp.opt 25°C to cold: Evolution of point mutant Bacillus lipase by error prone PCR.
    Goomber S; Kumar A; Kaur J
    Gene; 2016 Jan; 576(1 Pt 2):237-43. PubMed ID: 26456196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermostability of Lipase A and Dynamic Communication Based on Residue Interaction Network.
    Xia Q; Ding Y
    Protein Pept Lett; 2019; 26(9):702-716. PubMed ID: 31215367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of the tryptophan residues of Humicola lanuginosa lipase on its thermal stability.
    Zhu K; Jutila A; Tuominen EK; Patkar SA; Svendsen A; Kinnunen PK
    Biochim Biophys Acta; 2001 Jun; 1547(2):329-38. PubMed ID: 11410289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.