These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 21925623)

  • 21. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface characterization of corn stalk superfine powder studied by FTIR and XRD.
    Zhao X; Chen J; Chen F; Wang X; Zhu Q; Ao Q
    Colloids Surf B Biointerfaces; 2013 Apr; 104():207-12. PubMed ID: 23314610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous micronization and surface modification for improvement of flow and dissolution of drug particles.
    Han X; Ghoroi C; To D; Chen Y; Davé R
    Int J Pharm; 2011 Aug; 415(1-2):185-95. PubMed ID: 21664954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cytocompatibility of brushite and monetite cell culture scaffolds made by three-dimensional powder printing.
    Klammert U; Reuther T; Jahn C; Kraski B; Kübler AC; Gbureck U
    Acta Biomater; 2009 Feb; 5(2):727-34. PubMed ID: 18835228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro: osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds.
    Detsch R; Schaefer S; Deisinger U; Ziegler G; Seitz H; Leukers B
    J Biomater Appl; 2011 Sep; 26(3):359-80. PubMed ID: 20659962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface characterization of ginger powder examined by X-ray photoelectron spectroscopy and scanning electron microscopy.
    Zhao X; Ao Q; Du F; Zhu J; Liu J
    Colloids Surf B Biointerfaces; 2010 Sep; 79(2):494-500. PubMed ID: 20605705
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel fast disintegrating tablet fabricated by three-dimensional printing.
    Yu DG; Branford-White C; Yang YC; Zhu LM; Welbeck EW; Yang XL
    Drug Dev Ind Pharm; 2009 Dec; 35(12):1530-6. PubMed ID: 19929213
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications.
    Miranda P; Saiz E; Gryn K; Tomsia AP
    Acta Biomater; 2006 Jul; 2(4):457-66. PubMed ID: 16723287
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tissue engineering scaffolds for the regeneration of craniofacial bone.
    Chan WD; Perinpanayagam H; Goldberg HA; Hunter GK; Dixon SJ; Santos GC; Rizkalla AS
    J Can Dent Assoc; 2009 Jun; 75(5):373-7. PubMed ID: 19531334
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasma-induced polymerization as a tool for surface functionalization of polymer scaffolds for bone tissue engineering: an in vitro study.
    López-Pérez PM; da Silva RM; Sousa RA; Pashkuleva I; Reis RL
    Acta Biomater; 2010 Sep; 6(9):3704-12. PubMed ID: 20226283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calcium phosphate cement reinforcement by polymer infiltration and in situ curing: a method for 3D scaffold reinforcement.
    Alge DL; Chu TM
    J Biomed Mater Res A; 2010 Aug; 94(2):547-55. PubMed ID: 20186776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inorganic/organic biocomposite cryogels for regeneration of bony tissues.
    Mishra R; Kumar A
    J Biomater Sci Polym Ed; 2011; 22(16):2107-26. PubMed ID: 21067655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.
    Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT
    J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system.
    Shuai C; Gao C; Nie Y; Hu H; Zhou Y; Peng S
    Nanotechnology; 2011 Jul; 22(28):285703. PubMed ID: 21642759
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of powder properties on the imbibation rate.
    Hellborg D; Bergenståhl B; Trägårdh C
    Colloids Surf B Biointerfaces; 2012 May; 93():108-15. PubMed ID: 22244301
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding the influence of powder flowability, fluidization and de-agglomeration characteristics on the aerosolization of pharmaceutical model powders.
    Zhou QT; Armstrong B; Larson I; Stewart PJ; Morton DA
    Eur J Pharm Sci; 2010 Aug; 40(5):412-21. PubMed ID: 20433919
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Research about improving flowability of powder of Chinese herbs extracts by surface modification technology].
    Yu YH; Lu WL; Li JJ; Sun CC; Zhou Q
    Zhongguo Zhong Yao Za Zhi; 2014 Dec; 39(23):4590-5. PubMed ID: 25911807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of surface composition on the flowability of industrial spray-dried dairy powders.
    Kim EH; Chen XD; Pearce D
    Colloids Surf B Biointerfaces; 2005 Dec; 46(3):182-7. PubMed ID: 16337780
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement: a kinetic analysis.
    Ginebra MP; Driessens FC; Planell JA
    Biomaterials; 2004 Aug; 25(17):3453-62. PubMed ID: 15020119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of individual scaffolds based on a patient-specific alveolar bone defect model.
    Li J; Zhang L; Lv S; Li S; Wang N; Zhang Z
    J Biotechnol; 2011 Jan; 151(1):87-93. PubMed ID: 21056602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.