BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 21925713)

  • 21. Determination of eugenol, anethole, and coumarin in the mainstream cigarette smoke of Indonesian clove cigarettes.
    Polzin GM; Stanfill SB; Brown CR; Ashley DL; Watson CH
    Food Chem Toxicol; 2007 Oct; 45(10):1948-53. PubMed ID: 17583404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The use of charcoal in modified cigarette filters for mainstream smoke carbonyl reduction.
    Morabito JA; Holman MR; Ding YS; Yan X; Chan M; Chafin D; Perez J; Mendez MI; Cardenas RB; Watson C
    Regul Toxicol Pharmacol; 2017 Jun; 86():117-127. PubMed ID: 28238852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimation of mouth level exposure to smoke constituents of cigarettes with different tar levels using filter analysis.
    Hyodo T; Minagawa K; Inoue T; Fujimoto J; Minami N; Bito R; Mikita A
    Regul Toxicol Pharmacol; 2013 Dec; 67(3):486-98. PubMed ID: 24113618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scope for regulation of cigarette smoke toxicity: the case for including charcoal filters.
    Laugesen M; Fowles J
    N Z Med J; 2005 Apr; 118(1213):U1402. PubMed ID: 15843831
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aldehyde and Volatile Organic Compound Yields in Commercial Cigarette Mainstream Smoke Are Mutually Related and Depend on the Sugar and Humectant Content in Tobacco.
    Pennings JLA; Cremers JWJM; Becker MJA; Klerx WNM; Talhout R
    Nicotine Tob Res; 2020 Oct; 22(10):1748-1756. PubMed ID: 31679033
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous determination of volatile organic compounds and carbonyls in mainstream cigarette smoke using a sorbent cartridge followed by two-step elution.
    Uchiyama S; Tomizawa T; Inaba Y; Kunugita N
    J Chromatogr A; 2013 Nov; 1314():31-7. PubMed ID: 24054423
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Method for the Determination of Carbonyl Compounds in E-Cigarette Aerosols.
    Flora JW; Wilkinson CT; Wilkinson JW; Lipowicz PJ; Skapars JA; Anderson A; Miller JH
    J Chromatogr Sci; 2017 Feb; 55(2):142-148. PubMed ID: 28087758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solid-phase microextraction-based approach to determine free-base nicotine in trapped mainstream cigarette smoke total particulate matter.
    Watson CH; Trommel JS; Ashley DL
    J Agric Food Chem; 2004 Dec; 52(24):7240-5. PubMed ID: 15563201
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scope for regulation of cigarette smoke toxicity according to brand differences in published toxicant emissions.
    Laugesen M; Fowles J
    N Z Med J; 2005 Apr; 118(1213):U1401. PubMed ID: 15843830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of dioxin and dioxin-like compounds in mainstream smoke from selected US cigarette brands and reference cigarettes.
    Wilson CL; Bodnar JA; Brown BG; Morgan WT; Potts RJ; Borgerding MF
    Food Chem Toxicol; 2008 May; 46(5):1721-33. PubMed ID: 18289758
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mainstream smoke chemistry analysis of samples from the 2009 US cigarette market.
    Bodnar JA; Morgan WT; Murphy PA; Ogden MW
    Regul Toxicol Pharmacol; 2012 Oct; 64(1):35-42. PubMed ID: 22683394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Yields of tar and other smoke components from UK cigarettes.
    Phillips GF; Waller RE
    Food Chem Toxicol; 1991 Jul; 29(7):469-74. PubMed ID: 1894213
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A consideration of the role of gas/particle partitioning in the deposition of nicotine and other tobacco smoke compounds in the respiratory tract.
    Pankow JF
    Chem Res Toxicol; 2001 Nov; 14(11):1465-81. PubMed ID: 11712903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The changing cigarette, 1950-1995.
    Hoffmann D; Hoffmann I
    J Toxicol Environ Health; 1997 Mar; 50(4):307-64. PubMed ID: 9120872
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimating the hazards of "less hazardous" cigarettes. I. Tar, nicotine, carbon monoxide, acrolein, hydrogen cyanide, and total aldehyde deliveries of Canadian cigarettes.
    Rickert WS; Robinson JC; Young JC
    J Toxicol Environ Health; 1980 Mar; 6(2):351-65. PubMed ID: 6248649
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous determination of four tobacco-specific N-nitrosamines in mainstream smoke for Chinese Virginia cigarettes by liquid chromatography-tandem mass spectrometry and validation under ISO and "Canadian intense" machine smoking regimes.
    Xiong W; Hou H; Jiang X; Tang G; Hu Q
    Anal Chim Acta; 2010 Jul; 674(1):71-8. PubMed ID: 20638502
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of carcinogenic tobacco-specific nitrosamines in mainstream smoke from U.S.-brand and non-U.S.-brand cigarettes from 14 countries.
    Wu W; Zhang L; Jain RB; Ashley DL; Watson CH
    Nicotine Tob Res; 2005 Jun; 7(3):443-51. PubMed ID: 16085512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tobacco-specific nitrosamines in European and USA cigarettes.
    Fischer S; Spiegelhalder B; Preussmann R
    Arch Geschwulstforsch; 1990; 60(3):169-77. PubMed ID: 2369279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of Chemical Compounds Generated from Second-generation E-cigarettes Using a Sorbent Cartridge Followed by a Two-step Elution Method.
    Uchiyama S; Senoo Y; Hayashida H; Inaba Y; Nakagome H; Kunugita N
    Anal Sci; 2016; 32(5):549-55. PubMed ID: 27169655
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mainstream Smoke Levels of Volatile Organic Compounds in 50 U.S. Domestic Cigarette Brands Smoked With the ISO and Canadian Intense Protocols.
    Pazo DY; Moliere F; Sampson MM; Reese CM; Agnew-Heard KA; Walters MJ; Holman MR; Blount BC; Watson CH; Chambers DM
    Nicotine Tob Res; 2016 Sep; 18(9):1886-94. PubMed ID: 27113015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.