These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 21925713)

  • 41. Analysis of cigarette mainstream smoke for 1,1-dimethylhydrazine and vinyl acetate by gas chromatography-mass spectrometry.
    Diekmann J; Biefel C; Rustemeier K
    J Chromatogr Sci; 2002 Oct; 40(9):509-14. PubMed ID: 12433113
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of relationships between mainstream smoke acetaldehyde and "tar" and carbon monoxide yields in tobacco smoke and reducing sugars in tobacco blends of U.S. commercial cigarettes.
    Seeman JI; Laffoon SW; Kassman AJ
    Inhal Toxicol; 2003 Apr; 15(4):373-95. PubMed ID: 12635005
    [TBL] [Abstract][Full Text] [Related]  

  • 43. N-nitroso compounds in cigarette tobacco and their occurrence in mainstream tobacco smoke.
    Tricker AR; Ditrich C; Preussmann R
    Carcinogenesis; 1991 Feb; 12(2):257-61. PubMed ID: 1995191
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Percent free base nicotine in the tobacco smoke particulate matter of selected commercial and reference cigarettes.
    Pankow JF; Tavakoli AD; Luo W; Isabelle LM
    Chem Res Toxicol; 2003 Aug; 16(8):1014-8. PubMed ID: 12924929
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Acrolein Yields in Mainstream Smoke From Commercial Cigarette and Little Cigar Tobacco Products.
    Cecil TL; Brewer TM; Young M; Holman MR
    Nicotine Tob Res; 2017 Jul; 19(7):865-870. PubMed ID: 28339569
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determination of benzene and associated volatile compounds in mainstream cigarette smoke.
    Darrall KG; Figgins JA; Brown RD; Phillips GF
    Analyst; 1998 May; 123(5):1095-101. PubMed ID: 9709493
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of cigarette menthol content on mainstream smoke emissions.
    Gordon SM; Brinkman MC; Meng RQ; Anderson GM; Chuang JC; Kroeger RR; Reyes IL; Clark PI
    Chem Res Toxicol; 2011 Oct; 24(10):1744-53. PubMed ID: 21888394
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of carcinogen, carbon monoxide, and ultrafine particle emissions from narghile waterpipe and cigarette smoking: Sidestream smoke measurements and assessment of second-hand smoke emission factors.
    Daher N; Saleh R; Jaroudi E; Sheheitli H; Badr T; Sepetdjian E; Al Rashidi M; Saliba N; Shihadeh A
    Atmos Environ (1994); 2010 Jan; 44(1):8-14. PubMed ID: 20161525
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simple Determination of Gaseous and Particulate Compounds Generated from Heated Tobacco Products.
    Uchiyama S; Noguchi M; Takagi N; Hayashida H; Inaba Y; Ogura H; Kunugita N
    Chem Res Toxicol; 2018 Jul; 31(7):585-593. PubMed ID: 29863851
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of pyridines in mainstream cigarette smoke.
    Kulshreshtha NP; Moldoveanu SC
    J Chromatogr A; 2003 Jan; 985(1-2):303-12. PubMed ID: 12580498
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chemical changes in thirdhand smoke associated with remediation using an ozone generator.
    Tang X; González NR; Russell ML; Maddalena RL; Gundel LA; Destaillats H
    Environ Res; 2021 Jul; 198():110462. PubMed ID: 33217439
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The generation of formaldehyde in cigarettes--Overview and recent experiments.
    Baker RR
    Food Chem Toxicol; 2006 Nov; 44(11):1799-822. PubMed ID: 16859820
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Determination of four tobacco-specific nitrosamines in mainstream cigarette smoke by gas chromatography/ion trap mass spectrometry.
    Zhou J; Bai R; Zhu Y
    Rapid Commun Mass Spectrom; 2007; 21(24):4086-92. PubMed ID: 18008390
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nicotine and Carbonyl Emissions From Popular Electronic Cigarette Products: Correlation to Liquid Composition and Design Characteristics.
    El-Hellani A; Salman R; El-Hage R; Talih S; Malek N; Baalbaki R; Karaoghlanian N; Nakkash R; Shihadeh A; Saliba NA
    Nicotine Tob Res; 2018 Jan; 20(2):215-223. PubMed ID: 27798087
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of Charcoal on Carbonyl Delivery from Commercial, Research, and Make-Your-Own Cigarettes.
    Reilly SM; Goel R; Trushin N; Bitzer ZT; Elias RJ; Muscat J; Richie JP
    Chem Res Toxicol; 2018 Dec; 31(12):1339-1347. PubMed ID: 30426738
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparative study of the main characteristics and composition of the mainstream smoke of ten cigarette brands sold in Spain.
    Marcilla A; Martínez I; Berenguer D; Gómez-Siurana A; Beltrán MI
    Food Chem Toxicol; 2012 May; 50(5):1317-33. PubMed ID: 22342527
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Automated determination of seven phenolic compounds in mainstream tobacco smoke.
    Vaughan C; Stanfill SB; Polzin GM; Ashley DL; Watson CH
    Nicotine Tob Res; 2008 Jul; 10(7):1261-8. PubMed ID: 18629737
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selective determination of tobacco-specific nitrosamines in mainstream cigarette smoke by GC coupled to positive chemical ionization triple quadrupole MS.
    Wu D; Lu Y; Lin H; Zhou W; Gu W
    J Sep Sci; 2013 Aug; 36(16):2615-20. PubMed ID: 23907746
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of a standardized new cigarette smoke generating (SNCSG) system for the assessment of chemicals in the smoke of new cigarette types (heat-not-burn (HNB) tobacco and electronic cigarettes (E-Cigs)).
    Kim YH; An YJ
    Environ Res; 2020 Jun; 185():109413. PubMed ID: 32224342
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cigarettes and cigarette smoking.
    Burns DM
    Clin Chest Med; 1991 Dec; 12(4):631-42. PubMed ID: 1747982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.