These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 21925713)

  • 61. Assessment of major carcinogenic tobacco-specific N-nitrosamines in Thai cigarettes.
    Brunnemann KD; Mitacek EJ; Liu Y; Limsila T; Suttajit M
    Cancer Detect Prev; 1996; 20(2):114-21. PubMed ID: 8706036
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Analysis of aromatic amines in cigarette smoke.
    Stabbert R; Schäfer KH; Biefel C; Rustemeier K
    Rapid Commun Mass Spectrom; 2003; 17(18):2125-32. PubMed ID: 12955743
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Waterpipe smoking: the role of humectants in the release of toxic carbonyls.
    Schubert J; Heinke V; Bewersdorff J; Luch A; Schulz TG
    Arch Toxicol; 2012 Aug; 86(8):1309-16. PubMed ID: 22707202
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effect of the New York State cigarette fire safety standard on ignition propensity, smoke constituents, and the consumer market.
    Connolly GN; Alpert HR; Rees V; Carpenter C; Wayne GF; Vallone D; Koh H
    Tob Control; 2005 Oct; 14(5):321-7. PubMed ID: 16183983
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Quantitative puff-by-puff-resolved characterization of selected toxic compounds in cigarette mainstream smoke.
    Adam T; Mitschke S; Streibel T; Baker RR; Zimmermann R
    Chem Res Toxicol; 2006 Apr; 19(4):511-20. PubMed ID: 16608162
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Physical design analysis and mainstream smoke constituent yields of the new potential reduced exposure product, Marlboro UltraSmooth.
    Rees VW; Wayne GF; Thomas BF; Connolly GN
    Nicotine Tob Res; 2007 Nov; 9(11):1197-206. PubMed ID: 17978995
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Evaluation of biomarkers of exposure to selected cigarette smoke constituents in adult smokers switched to carbon-filtered cigarettes in short-term and long-term clinical studies.
    Sarkar M; Kapur S; Frost-Pineda K; Feng S; Wang J; Liang Q; Roethig H
    Nicotine Tob Res; 2008 Dec; 10(12):1761-72. PubMed ID: 19023827
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Development of a commercial cigarette "market map" comparison methodology for evaluating new or non-conventional cigarettes.
    Counts ME; Hsu FS; Tewes FJ
    Regul Toxicol Pharmacol; 2006 Dec; 46(3):225-42. PubMed ID: 16989926
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Spectrophotometric determination of ammonia levels in tobacco fillers of and sidestream smoke from different cigarette brands in Japan.
    Inaba Y; Uchiyama S; Kunugita N
    Environ Health Prev Med; 2018 Apr; 23(1):15. PubMed ID: 29703135
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Determination of major carbonyls in mainstream smoke by rapid column high performance liquid chromatography].
    Huang Y; Wang Y; Miao M; Zhao Q; Yang G
    Se Pu; 2007 Mar; 25(2):230-3. PubMed ID: 17580693
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Selenium in mainstream and sidestream smoke of cigarettes containing fly ash-grown tobacco.
    Gutenmann WH; Lisk DJ; Shane BS; Hoffmann D; Adams JD
    Drug Chem Toxicol; 1987; 10(3-4):181-7. PubMed ID: 3428180
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Gas/particle partitioning of two acid-base active compounds in mainstream tobacco smoke: nicotine and ammonia.
    Chen C; Pankow JF
    J Agric Food Chem; 2009 Apr; 57(7):2678-90. PubMed ID: 19284716
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Do Budget Cigarettes Emit More Particles? An Aerosol Spectrometric Comparison of Particulate Matter Concentrations between Private-Label Cigarettes and More Expensive Brand-Name Cigarettes.
    Gerlach G; Braun M; Dröge J; Groneberg DA
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627457
    [TBL] [Abstract][Full Text] [Related]  

  • 74. FTIR analysis of gaseous compounds in the mainstream smoke of regular and light cigarettes.
    Bacsik Z; McGregor J; Mink J
    Food Chem Toxicol; 2007 Feb; 45(2):266-71. PubMed ID: 17046136
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hydrogen Cyanide and Aromatic Amine Yields in the Mainstream Smoke of 60 Little Cigars.
    Ai J; Hassink M; Taylor KM; Deycard VN; Hearn B; Williams K; McGuigan M; Valentin-Blasini L; Watson CH
    Chem Res Toxicol; 2022 Jun; 35(6):940-953. PubMed ID: 35612471
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The first published chemical analyses of smoke from South African cigarettes.
    Seftel HC
    S Afr Med J; 1979 May; 55(19):743-8. PubMed ID: 462311
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Correlation of volatile carbonyl yields emitted by e-cigarettes with the temperature of the heating coil and the perceived sensorial quality of the generated vapours.
    Geiss O; Bianchi I; Barrero-Moreno J
    Int J Hyg Environ Health; 2016 May; 219(3):268-77. PubMed ID: 26847410
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Constituents in tobacco and smoke emissions from Canadian cigarettes.
    Hammond D; O'Connor RJ
    Tob Control; 2008 Sep; 17 Suppl 1():i24-31. PubMed ID: 18768456
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Irritants in cigarette smoke plumes.
    Ayer HE; Yeager DW
    Am J Public Health; 1982 Nov; 72(11):1283-5. PubMed ID: 7125032
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Cigar burning under different smoking intensities and effects on emissions.
    Dethloff O; Mueller C; Cahours X; Colard S
    Regul Toxicol Pharmacol; 2017 Dec; 91():190-196. PubMed ID: 29074275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.