BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21925727)

  • 21. Fabrication of chitosan/poly(ε-caprolactone) composite hydrogels for tissue engineering applications.
    Zhong X; Ji C; Chan AK; Kazarian SG; Ruys A; Dehghani F
    J Mater Sci Mater Med; 2011 Feb; 22(2):279-88. PubMed ID: 21170732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of semi-degradable hydrogels based on poly(vinyl alcohol) and poly(lactic-co-glycolic acid) for cartilage tissue engineering.
    Spiller KL; Holloway JL; Gribb ME; Lowman AM
    J Tissue Eng Regen Med; 2011 Aug; 5(8):636-47. PubMed ID: 21774087
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel biomimetic thermosensitive β-tricalcium phosphate/chitosan-based hydrogels for bone tissue engineering.
    Dessì M; Borzacchiello A; Mohamed TH; Abdel-Fattah WI; Ambrosio L
    J Biomed Mater Res A; 2013 Oct; 101(10):2984-93. PubMed ID: 23873836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan-polyethylene glycol diacrylate hybrid hydrogels.
    Zhong C; Wu J; Reinhart-King CA; Chu CC
    Acta Biomater; 2010 Oct; 6(10):3908-18. PubMed ID: 20416406
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physicochemical and biological activity study of genipin-crosslinked chitosan scaffolds prepared by using supercritical carbon dioxide for tissue engineering applications.
    Kumari R; Dutta PK
    Int J Biol Macromol; 2010 Mar; 46(2):261-6. PubMed ID: 20035784
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Collagen/chitosan/hyaluronic acid - based injectable hydrogels for tissue engineering applications - design, physicochemical and biological characterization.
    Gilarska A; Lewandowska-Łańcucka J; Horak W; Nowakowska M
    Colloids Surf B Biointerfaces; 2018 Oct; 170():152-162. PubMed ID: 29902729
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Collagen fibers constructed by gravity filament forming process.
    Tung FI; Chiu CT; Chang YP; Wang YJ
    Artif Cells Blood Substit Immobil Biotechnol; 2011 Oct; 39(5):335-40. PubMed ID: 21557701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physicochemical modulation of chitosan-based hydrogels induces different biological responses: interest for tissue engineering.
    Rami L; Malaise S; Delmond S; Fricain JC; Siadous R; Schlaubitz S; Laurichesse E; Amédée J; Montembault A; David L; Bordenave L
    J Biomed Mater Res A; 2014 Oct; 102(10):3666-76. PubMed ID: 24293114
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polysaccharide-based hydrogels for the immobilization and controlled release of bovine serum albumin.
    Varnier K; Vieira T; Wolf M; Belfiore LA; Tambourgi EB; Paulino AT
    Int J Biol Macromol; 2018 Dec; 120(Pt A):522-528. PubMed ID: 30165142
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering.
    Correia CR; Moreira-Teixeira LS; Moroni L; Reis RL; van Blitterswijk CA; Karperien M; Mano JF
    Tissue Eng Part C Methods; 2011 Jul; 17(7):717-30. PubMed ID: 21517692
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of pore size on vascularization and tissue remodeling in PEG hydrogels.
    Chiu YC; Cheng MH; Engel H; Kao SW; Larson JC; Gupta S; Brey EM
    Biomaterials; 2011 Sep; 32(26):6045-51. PubMed ID: 21663958
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Porous Agarose-Based Semi-IPN Hydrogels: Characterization and Cell Affinity Studies.
    Vardar E; Vert M; Coudane J; Hasirci V; Hasirci N
    J Biomater Sci Polym Ed; 2012; 23(18):2273-86. PubMed ID: 22182333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis, characterization of chitosans and fabrication of sintered chitosan microsphere matrices for bone tissue engineering.
    Abdel-Fattah WI; Jiang T; El-Bassyouni Gel-T; Laurencin CT
    Acta Biomater; 2007 Jul; 3(4):503-14. PubMed ID: 17320493
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production and characterization of chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications.
    Tuzlakoglu K; Alves CM; Mano JF; Reis RL
    Macromol Biosci; 2004 Aug; 4(8):811-9. PubMed ID: 15468275
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of gum arabic to improve the fabrication of chitosan-gelatin-based nanofibers for tissue engineering.
    Tsai RY; Kuo TY; Hung SC; Lin CM; Hsien TY; Wang DM; Hsieh HJ
    Carbohydr Polym; 2015 Jan; 115():525-32. PubMed ID: 25439928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanostructuring PEG-fibrinogen hydrogels to control cellular morphogenesis.
    Frisman I; Seliktar D; Bianco-Peled H
    Biomaterials; 2011 Nov; 32(31):7839-46. PubMed ID: 21784517
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Porous gelatin hydrogels: 2. In vitro cell interaction study.
    Dubruel P; Unger R; Vlierberghe SV; Cnudde V; Jacobs PJ; Schacht E; Kirkpatrick CJ
    Biomacromolecules; 2007 Feb; 8(2):338-44. PubMed ID: 17291056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering.
    Fan M; Ma Y; Mao J; Zhang Z; Tan H
    Acta Biomater; 2015 Jul; 20():60-68. PubMed ID: 25839124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering.
    Hsieh WC; Chang CP; Lin SM
    Colloids Surf B Biointerfaces; 2007 Jun; 57(2):250-5. PubMed ID: 17363229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel chitosan/collagen scaffold containing transforming growth factor-beta1 DNA for periodontal tissue engineering.
    Zhang Y; Cheng X; Wang J; Wang Y; Shi B; Huang C; Yang X; Liu T
    Biochem Biophys Res Commun; 2006 May; 344(1):362-9. PubMed ID: 16600180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.