These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 2192611)

  • 1. Hippocampal zinc thionein and pyridoxal phosphate modulate synaptic functions.
    Ebadi M; Murrin LC; Pfeiffer RF
    Ann N Y Acad Sci; 1990; 585():189-201. PubMed ID: 2192611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical properties of metallothionein isoforms from bovine hippocampus.
    Paliwal VK; Ebadi M
    Exp Brain Res; 1989; 75(3):477-82. PubMed ID: 2744106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anticonvulsant activity of muscimol and gamma-aminobutyric acid against pyridoxal phosphate-induced epileptic seizures.
    Kouyoumdjian JC; Ebadi M
    J Neurochem; 1981 Jan; 36(1):251-7. PubMed ID: 7463050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of zinc and zinc-binding proteins in regulation of glutamic acid decarboxylase in brain.
    Ebadi M; Wilt S; Ramaley R; Swanson S; Mebus C
    Prog Clin Biol Res; 1984; 144A():255-75. PubMed ID: 6328536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid composition, immunoreactivity, sequence analysis, and function of bovine hippocampal metallothionein isoforms.
    Ebadi M; Perini F; Mountjoy K; Garvey JS
    J Neurochem; 1996 May; 66(5):2121-7. PubMed ID: 8780044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between pyridoxal kinase and pyridoxal-5-phosphate-dependent enzymes.
    Cheung PY; Fong CC; Ng KT; Lam WC; Leung YC; Tsang CW; Yang M; Wong MS
    J Biochem; 2003 Nov; 134(5):731-8. PubMed ID: 14688239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyridoxal kinase inhibition by artemisinins down-regulates inhibitory neurotransmission.
    Kasaragod VB; Pacios-Michelena A; Schaefer N; Zheng F; Bader N; Alzheimer C; Villmann C; Schindelin H
    Proc Natl Acad Sci U S A; 2020 Dec; 117(52):33235-33245. PubMed ID: 33318193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epilepsy and hippocampal neurodegeneration induced by glutamate decarboxylase inhibitors in awake rats.
    Salazar P; Tapia R
    Epilepsy Res; 2015 Oct; 116():27-33. PubMed ID: 26354164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc-binding proteins in the brain.
    Ebadi M; Hama Y
    Adv Exp Med Biol; 1986; 203():557-70. PubMed ID: 3788711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basal expression and induction of glutamate decarboxylase and GABA in excitatory granule cells of the rat and monkey hippocampal dentate gyrus.
    Sloviter RS; Dichter MA; Rachinsky TL; Dean E; Goodman JH; Sollas AL; Martin DL
    J Comp Neurol; 1996 Sep; 373(4):593-618. PubMed ID: 8889946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of mRNAs encoding two forms of glutamic acid decarboxylase in the rat hippocampal formation.
    Houser CR; Esclapez M
    Hippocampus; 1994 Oct; 4(5):530-45. PubMed ID: 7889124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of pyridoxal kinase by metallothionein.
    Churchich JE; Scholz G; Kwok F
    Biochim Biophys Acta; 1989 Jul; 996(3):181-6. PubMed ID: 2546602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical characteristics of the gamma-aminobutyric acid system in the insulinoma cell lines HIT-T15, RIN-m5F, betaTC3, and comparison with rat brain.
    Salazar P; del Carmen Sánchez-Soto M; Hiriart M; Tapia R
    Arch Med Res; 2001; 32(5):419-28. PubMed ID: 11578757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The action of zinc on synaptic transmission and neuronal excitability in cultures of mouse hippocampus.
    Mayer ML; Vyklicky L
    J Physiol; 1989 Aug; 415():351-65. PubMed ID: 2561789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission.
    Xie XM; Smart TG
    Nature; 1991 Feb; 349(6309):521-4. PubMed ID: 1846946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of glutamate-decarboxylase-immunoreactive neurons and synapses in the rat and monkey hippocampus: light and electron microscopy.
    Babb TL; Pretorius JK; Kupfer WR; Brown WJ
    J Comp Neurol; 1988 Dec; 278(1):121-38. PubMed ID: 3209750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABAergic dysfunction in mGlu7 receptor-deficient mice as reflected by decreased levels of glutamic acid decarboxylase 65 and 67kDa and increased reelin proteins in the hippocampus.
    Wierońska JM; Brański P; Siwek A; Dybala M; Nowak G; Pilc A
    Brain Res; 2010 Jun; 1334():12-24. PubMed ID: 20353761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural characteristics of brain glutamate decarboxylase in relation to its interaction and activation.
    Chen CH; Wu SJ; Martin DL
    Arch Biochem Biophys; 1998 Jan; 349(1):175-82. PubMed ID: 9439596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gamma aminobutyric acid (GABA) production in Escherichia coli with pyridoxal kinase (pdxY) based regeneration system.
    Ham S; Bhatia SK; Gurav R; Choi YK; Jeon JM; Yoon JJ; Choi KY; Ahn J; Kim HT; Yang YH
    Enzyme Microb Technol; 2022 Apr; 155():109994. PubMed ID: 35077875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes of pyridoxal kinase expression and activity in the gerbil hippocampus following transient forebrain ischemia.
    Hwang IK; Yoo KY; Kim DS; Eum WS; Park JK; Park J; Kwon OS; Kang TC; Choi SY; Won MH
    Neuroscience; 2004; 128(3):511-8. PubMed ID: 15381280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.