These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 21926127)

  • 61. GraphWeb: mining heterogeneous biological networks for gene modules with functional significance.
    Reimand J; Tooming L; Peterson H; Adler P; Vilo J
    Nucleic Acids Res; 2008 Jul; 36(Web Server issue):W452-9. PubMed ID: 18460544
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A novel network-based method for measuring the functional relationship between gene sets.
    Wang Q; Sun J; Zhou M; Yang H; Li Y; Li X; Lv S; Li X; Li Y
    Bioinformatics; 2011 Jun; 27(11):1521-8. PubMed ID: 21450716
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Efficient searching and annotation of metabolic networks using chemical similarity.
    Pertusi DA; Stine AE; Broadbelt LJ; Tyo KE
    Bioinformatics; 2015 Apr; 31(7):1016-24. PubMed ID: 25417203
    [TBL] [Abstract][Full Text] [Related]  

  • 64. FSM: Fast and scalable network motif discovery for exploring higher-order network organizations.
    Wang T; Peng J; Peng Q; Wang Y; Chen J
    Methods; 2020 Feb; 173():83-93. PubMed ID: 31306744
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Discovering pathways by orienting edges in protein interaction networks.
    Gitter A; Klein-Seetharaman J; Gupta A; Bar-Joseph Z
    Nucleic Acids Res; 2011 Mar; 39(4):e22. PubMed ID: 21109539
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Usefulness and limitations of dK random graph models to predict interactions and functional homogeneity in biological networks under a pseudo-likelihood parameter estimation approach.
    Wang W; Nunez-Iglesias J; Luan Y; Sun F
    BMC Bioinformatics; 2009 Sep; 10():277. PubMed ID: 19728875
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Construction of Signaling Pathways with RNAi Data and Multiple Reference Networks.
    Alim MA; Ay A; Hasan MM; Thai MT; Kahveci T
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1079-1091. PubMed ID: 30102599
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Structure Optimization for Large Gene Networks Based on Greedy Strategy.
    Gómez-Vela F; Rodriguez-Baena DS; Vázquez-Noguera JL
    Comput Math Methods Med; 2018; 2018():9674108. PubMed ID: 30013615
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Metabolic network alignment in large scale by network compression.
    Ay F; Dang M; Kahveci T
    BMC Bioinformatics; 2012 Mar; 13 Suppl 3(Suppl 3):S2. PubMed ID: 22536900
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Evolution of metabolic network organization.
    Mazurie A; Bonchev D; Schwikowski B; Buck GA
    BMC Syst Biol; 2010 May; 4():59. PubMed ID: 20459825
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Orienting Conflicted Graph Edges Using Genetic Algorithms to Discover Pathways in Protein-Protein Interaction Networks.
    Iqbal S; Halim Z
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):1970-1985. PubMed ID: 31944985
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mining and state-space modeling and verification of sub-networks from large-scale biomolecular networks.
    Hu X; Wu FX
    BMC Bioinformatics; 2007 Aug; 8():324. PubMed ID: 17764552
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Comparison of protein interaction networks reveals species conservation and divergence.
    Liang Z; Xu M; Teng M; Niu L
    BMC Bioinformatics; 2006 Oct; 7():457. PubMed ID: 17044912
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Active subnetwork recovery with a mechanism-dependent scoring function; with application to angiogenesis and organogenesis studies.
    Lichtenstein I; Charleston MA; Caetano TS; Gamble JR; Vadas MA
    BMC Bioinformatics; 2013 Feb; 14():59. PubMed ID: 23432934
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biomolecular network querying: a promising approach in systems biology.
    Zhang S; Zhang XS; Chen L
    BMC Syst Biol; 2008 Jan; 2():5. PubMed ID: 18205908
    [TBL] [Abstract][Full Text] [Related]  

  • 76. TORQUE: topology-free querying of protein interaction networks.
    Bruckner S; Hüffner F; Karp RM; Shamir R; Sharan R
    Nucleic Acids Res; 2009 Jul; 37(Web Server issue):W106-8. PubMed ID: 19491310
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Analysis of Critical and Redundant Vertices in Controlling Directed Complex Networks Using Feedback Vertex Sets.
    Bao Y; Hayashida M; Liu P; Ishitsuka M; Nacher JC; Akutsu T
    J Comput Biol; 2018 Oct; 25(10):1071-1090. PubMed ID: 30074414
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A network-based pathway-expanding approach for pathway analysis.
    Zhang Q; Li J; Xie H; Xue H; Wang Y
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):536. PubMed ID: 28155638
    [TBL] [Abstract][Full Text] [Related]  

  • 79. WMAXC: a weighted maximum clique method for identifying condition-specific sub-network.
    Amgalan B; Lee H
    PLoS One; 2014; 9(8):e104993. PubMed ID: 25148538
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Comparative analysis of protein interaction networks reveals that conserved pathways are susceptible to HIV-1 interception.
    Qian X; Yoon BJ
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S19. PubMed ID: 21342548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.