These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21926151)

  • 1. Preliminary evaluation of therapeutic ion release from Sr-doped zinc-silicate glass ceramics.
    Looney M; O'Shea H; Boyd D
    J Biomater Appl; 2013 Jan; 27(5):511-24. PubMed ID: 21926151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evaluation of the processing conditions, structure, and properties (biaxial flexural strength and antibacterial efficacy) of sintered strontium-zinc-silicate glass ceramics.
    Looney M; Shea HO; Gunn L; Crowley D; Boyd D
    J Biomater Appl; 2013 May; 27(8):937-47. PubMed ID: 22207607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological responses of human bone marrow mesenchymal stem cells to Sr-M-Si (M = Zn, Mg) silicate bioceramics.
    Zhang M; Wu C; Lin K; Fan W; Chen L; Xiao Y; Chang J
    J Biomed Mater Res A; 2012 Nov; 100(11):2979-90. PubMed ID: 22696393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of composition on ion release from Ca-Sr-Na-Zn-Si glass bone grafts.
    Murphy S; Boyd D; Moane S; Bennett M
    J Mater Sci Mater Med; 2009 Nov; 20(11):2207-14. PubMed ID: 19475338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering.
    Wu C; Zhou Y; Lin C; Chang J; Xiao Y
    Acta Biomater; 2012 Oct; 8(10):3805-15. PubMed ID: 22750735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of ionic dissolution products of Ca-Sr-Na-Zn-Si bioactive glass on in vitro cytocompatibility.
    Murphy S; Wren AW; Towler MR; Boyd D
    J Mater Sci Mater Med; 2010 Oct; 21(10):2827-34. PubMed ID: 20711638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative performance of three ceramic bone graft substitutes.
    Hing KA; Wilson LF; Buckland T
    Spine J; 2007; 7(4):475-90. PubMed ID: 17630146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics.
    Hoppe A; Güldal NS; Boccaccini AR
    Biomaterials; 2011 Apr; 32(11):2757-74. PubMed ID: 21292319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substitutions of strontium in mesoporous calcium silicate and their physicochemical and biological properties.
    Zhu Y; Zhu M; He X; Zhang J; Tao C
    Acta Biomater; 2013 May; 9(5):6723-31. PubMed ID: 23376133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of hierarchically macroporous and mesoporous CaO-MO-SiO(2)-P(2)O(5) (M=Mg, Zn, Sr) bioactive glass scaffolds.
    Wang X; Li X; Ito A; Sogo Y
    Acta Biomater; 2011 Oct; 7(10):3638-44. PubMed ID: 21742065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different response of osteoblastic cells to Mg(2+), Zn(2+) and Sr(2+) doped calcium silicate coatings.
    Hu D; Li K; Xie Y; Pan H; Zhao J; Huang L; Zheng X
    J Mater Sci Mater Med; 2016 Mar; 27(3):56. PubMed ID: 26787488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc and Strontium-Substituted Bioactive Glass Nanoparticle/Alginate Composites Scaffold for Bone Regeneration.
    Naruphontjirakul P; Panpisut P; Patntirapong S
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
    Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F
    J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds.
    Zhang H; Ye XJ; Li JS
    Biomed Mater; 2009 Aug; 4(4):045007. PubMed ID: 19605959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties.
    Wu C; Ramaswamy Y; Kwik D; Zreiqat H
    Biomaterials; 2007 Jul; 28(21):3171-81. PubMed ID: 17445881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics.
    Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C
    Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering.
    Erol MM; Mouriňo V; Newby P; Chatzistavrou X; Roether JA; Hupa L; Boccaccini AR
    Acta Biomater; 2012 Feb; 8(2):792-801. PubMed ID: 22040685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-CT studies on 3-D bioactive glass-ceramic scaffolds for bone regeneration.
    Renghini C; Komlev V; Fiori F; Verné E; Baino F; Vitale-Brovarone C
    Acta Biomater; 2009 May; 5(4):1328-37. PubMed ID: 19038589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel tantalum-containing bioglass. Part I. Structure and solubility.
    Alhalawani AM; Towler MR
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():202-211. PubMed ID: 28024578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structural, biological and dielectric properties of Sr, Mg and Zn doped silicate ceramics.
    Riaz M; Najam M; Arif S; Farooq S; Mahmood A
    J Mech Behav Biomed Mater; 2023 Jun; 142():105830. PubMed ID: 37040688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.