These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 21926276)
21. Hypoxia preconditioning increases the ability of healthy but not diabetic rat-derived adipose stromal/stem cells (ASC) to improve histological lesions of streptozotocin-induced diabetic nephropathy. Carmona M; Paco-Meza LM; Ortega R; Cañadillas S; Caballero-Villarraso J; Blanco A; Herrera C Pathol Res Pract; 2022 Feb; 230():153756. PubMed ID: 35032832 [TBL] [Abstract][Full Text] [Related]
22. Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Wang XX; Jiang T; Shen Y; Caldas Y; Miyazaki-Anzai S; Santamaria H; Urbanek C; Solis N; Scherzer P; Lewis L; Gonzalez FJ; Adorini L; Pruzanski M; Kopp JB; Verlander JW; Levi M Diabetes; 2010 Nov; 59(11):2916-27. PubMed ID: 20699418 [TBL] [Abstract][Full Text] [Related]
24. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside exerted protective effects on diabetic nephropathy in mice with hyperglycemia induced by streptozotocin. Chen GT; Yang M; Chen BB; Song Y; Zhang W; Zhang Y Food Funct; 2016 Nov; 7(11):4628-4636. PubMed ID: 27747335 [TBL] [Abstract][Full Text] [Related]
25. ADMA reduction does not protect mice with streptozotocin-induced diabetes mellitus from development of diabetic nephropathy. Rodionov RN; Heinrich A; Brilloff S; Jarzebska N; Martens-Lobenhoffer J; Bode-Böger SM; Todorov VT; Hugo CPM; Weiss N; Hohenstein B Atheroscler Suppl; 2017 Nov; 30():319-325. PubMed ID: 29096857 [TBL] [Abstract][Full Text] [Related]
26. Renal prostaglandin E2 receptor (EP) expression profile is altered in streptozotocin and B6-Ins2Akita type I diabetic mice. Nasrallah R; Xiong H; Hébert RL Am J Physiol Renal Physiol; 2007 Jan; 292(1):F278-84. PubMed ID: 16954344 [TBL] [Abstract][Full Text] [Related]
27. Genetic deficiency of anti-aging gene klotho exacerbates early nephropathy in STZ-induced diabetes in male mice. Lin Y; Kuro-o M; Sun Z Endocrinology; 2013 Oct; 154(10):3855-63. PubMed ID: 23928372 [TBL] [Abstract][Full Text] [Related]
28. Requirement for TLR2 in the development of albuminuria, inflammation and fibrosis in experimental diabetic nephropathy. Ma J; Wu H; Zhao CY; Panchapakesan U; Pollock C; Chadban SJ Int J Clin Exp Pathol; 2014; 7(2):481-95. PubMed ID: 24551269 [TBL] [Abstract][Full Text] [Related]
29. A sensitized screen of N-ethyl-N-nitrosourea-mutagenized mice identifies dominant mutants predisposed to diabetic nephropathy. Tchekneva EE; Rinchik EM; Polosukhina D; Davis LS; Kadkina V; Mohamed Y; Dunn SR; Sharma K; Qi Z; Fogo AB; Breyer MD J Am Soc Nephrol; 2007 Jan; 18(1):103-12. PubMed ID: 17151334 [TBL] [Abstract][Full Text] [Related]
30. Diabetic myopathy differs between Ins2Akita+/- and streptozotocin-induced Type 1 diabetic models. Krause MP; Riddell MC; Gordon CS; Imam SA; Cafarelli E; Hawke TJ J Appl Physiol (1985); 2009 May; 106(5):1650-9. PubMed ID: 19246652 [TBL] [Abstract][Full Text] [Related]
31. Combining streptozotocin and unilateral nephrectomy is an effective method for inducing experimental diabetic nephropathy in the 'resistant' C57Bl/6J mouse strain. Uil M; Scantlebery AML; Butter LM; Larsen PWB; de Boer OJ; Leemans JC; Florquin S; Roelofs JJTH Sci Rep; 2018 Apr; 8(1):5542. PubMed ID: 29615804 [TBL] [Abstract][Full Text] [Related]
32. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. Putta S; Lanting L; Sun G; Lawson G; Kato M; Natarajan R J Am Soc Nephrol; 2012 Mar; 23(3):458-69. PubMed ID: 22223877 [TBL] [Abstract][Full Text] [Related]
33. Implication of dysregulation of the canonical wingless-type MMTV integration site (WNT) pathway in diabetic nephropathy. Zhou T; He X; Cheng R; Zhang B; Zhang RR; Chen Y; Takahashi Y; Murray AR; Lee K; Gao G; Ma JX Diabetologia; 2012 Jan; 55(1):255-66. PubMed ID: 22016045 [TBL] [Abstract][Full Text] [Related]
34. Tim-3 aggravates podocyte injury in diabetic nephropathy by promoting macrophage activation via the NF-κB/TNF-α pathway. Yang H; Xie T; Li D; Du X; Wang T; Li C; Song X; Xu L; Yi F; Liang X; Gao L; Yang X; Ma C Mol Metab; 2019 May; 23():24-36. PubMed ID: 30862474 [TBL] [Abstract][Full Text] [Related]
35. Nicotinamide protects against diabetic kidney disease through regulation of Sirt1. Yang Y; Huang J; Xie L; Wang Y; Guo S; Wang M; Shao X; Liu W; Wang Y; Li Q; Wu X; Zhang Z; Zeng F; Gong W Endocrine; 2024 Aug; 85(2):638-648. PubMed ID: 38446387 [TBL] [Abstract][Full Text] [Related]
36. Assessment of diabetic nephropathy in the Akita mouse. Chang JH; Gurley SB Methods Mol Biol; 2012; 933():17-29. PubMed ID: 22893398 [TBL] [Abstract][Full Text] [Related]
37. Establishing equivalent diabetes in male and female Nos3-deficient mice results in a comparable onset of diabetic kidney injury. Tian L; Nikolic-Paterson DJ; Tesch GH Physiol Rep; 2019 Sep; 7(18):e14197. PubMed ID: 31535473 [TBL] [Abstract][Full Text] [Related]
38. Modulation of renal superoxide dismutase by telmisartan therapy in C57BL/6-Ins2(Akita) diabetic mice. Fujita H; Fujishima H; Morii T; Sakamoto T; Komatsu K; Hosoba M; Narita T; Takahashi K; Takahashi T; Yamada Y Hypertens Res; 2012 Feb; 35(2):213-20. PubMed ID: 22072110 [TBL] [Abstract][Full Text] [Related]
39. Impact of genetic background on nephropathy in diabetic mice. Gurley SB; Clare SE; Snow KP; Hu A; Meyer TW; Coffman TM Am J Physiol Renal Physiol; 2006 Jan; 290(1):F214-22. PubMed ID: 16118394 [TBL] [Abstract][Full Text] [Related]
40. α-Lipoic acid protects diabetic apolipoprotein E-deficient mice from nephropathy. Yi X; Nickeleit V; James LR; Maeda N J Diabetes Complications; 2011; 25(3):193-201. PubMed ID: 20801062 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]