BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21926339)

  • 1. Roles for redox mechanisms controlling protein kinase G in pulmonary and coronary artery responses to hypoxia.
    Neo BH; Kandhi S; Wolin MS
    Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2295-304. PubMed ID: 21926339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles for soluble guanylate cyclase and a thiol oxidation-elicited subunit dimerization of protein kinase G in pulmonary artery relaxation to hydrogen peroxide.
    Neo BH; Kandhi S; Wolin MS
    Am J Physiol Heart Circ Physiol; 2010 Oct; 299(4):H1235-41. PubMed ID: 20709865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles for cytosolic NADPH redox in regulating pulmonary artery relaxation by thiol oxidation-elicited subunit dimerization of protein kinase G1α.
    Neo BH; Patel D; Kandhi S; Wolin MS
    Am J Physiol Heart Circ Physiol; 2013 Aug; 305(3):H330-43. PubMed ID: 23709600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dehydroepiandrosterone promotes pulmonary artery relaxation by NADPH oxidation-elicited subunit dimerization of protein kinase G 1α.
    Patel D; Kandhi S; Kelly M; Neo BH; Wolin MS
    Am J Physiol Lung Cell Mol Physiol; 2014 Feb; 306(4):L383-91. PubMed ID: 24375799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of sulfhydryl-dependent dimerization of soluble guanylyl cyclase in relaxation of porcine coronary artery to nitric oxide.
    Zheng X; Ying L; Liu J; Dou D; He Q; Leung SW; Man RY; Vanhoutte PM; Gao Y
    Cardiovasc Res; 2011 Jun; 90(3):565-72. PubMed ID: 21248051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposure of mice to chronic hypoxia attenuates pulmonary arterial contractile responses to acute hypoxia by increases in extracellular hydrogen peroxide.
    Patel D; Alhawaj R; Wolin MS
    Am J Physiol Regul Integr Comp Physiol; 2014 Aug; 307(4):R426-33. PubMed ID: 24920729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soluble guanylyl cyclase-activated cyclic GMP-dependent protein kinase inhibits arterial smooth muscle cell migration independent of VASP-serine 239 phosphorylation.
    Holt AW; Martin DN; Shaver PR; Adderley SP; Stone JD; Joshi CN; Francisco JT; Lust RM; Weidner DA; Shewchuk BM; Tulis DA
    Cell Signal; 2016 Sep; 28(9):1364-1379. PubMed ID: 27302407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein kinase G phosphorylates soluble guanylyl cyclase on serine 64 and inhibits its activity.
    Zhou Z; Sayed N; Pyriochou A; Roussos C; Fulton D; Beuve A; Papapetropoulos A
    Arterioscler Thromb Vasc Biol; 2008 Oct; 28(10):1803-10. PubMed ID: 18635821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfhydryl-dependent dimerization of soluble guanylyl cyclase modulates the relaxation of porcine pulmonary arteries to nitric oxide.
    Ye L; Liu J; Liu H; Ying L; Dou D; Chen Z; Xu X; Raj JU; Gao Y
    Pflugers Arch; 2013 Feb; 465(2):333-41. PubMed ID: 23143201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox regulation of guanylate cyclase and protein kinase G in vascular responses to hypoxia.
    Neo BH; Kandhi S; Ahmad M; Wolin MS
    Respir Physiol Neurobiol; 2010 Dec; 174(3):259-64. PubMed ID: 20831906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of iNOS/sGC/PKG pathway, COX-2, CYP4A1, and gp91(phox) to the protective effect of 5,14-HEDGE, a 20-HETE mimetic, against vasodilation, hypotension, tachycardia, and inflammation in a rat model of septic shock.
    Tunctan B; Korkmaz B; Sari AN; Kacan M; Unsal D; Serin MS; Buharalioglu CK; Sahan-Firat S; Cuez T; Schunck WH; Manthati VL; Falck JR; Malik KU
    Nitric Oxide; 2013 Sep; 33():18-41. PubMed ID: 23684565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protoporphyrin IX generation from delta-aminolevulinic acid elicits pulmonary artery relaxation and soluble guanylate cyclase activation.
    Mingone CJ; Gupte SA; Chow JL; Ahmad M; Abraham NG; Wolin MS
    Am J Physiol Lung Cell Mol Physiol; 2006 Sep; 291(3):L337-44. PubMed ID: 16899710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cIMP synthesized by sGC as a mediator of hypoxic contraction of coronary arteries.
    Chen Z; Zhang X; Ying L; Dou D; Li Y; Bai Y; Liu J; Liu L; Feng H; Yu X; Leung SW; Vanhoutte PM; Gao Y
    Am J Physiol Heart Circ Physiol; 2014 Aug; 307(3):H328-36. PubMed ID: 24906916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The vasodilatory effect of sulfur dioxide via SGC/cGMP/PKG pathway in association with sulfhydryl-dependent dimerization.
    Yao Q; Huang Y; Liu AD; Zhu M; Liu J; Yan H; Zhang Q; Geng B; Gao Y; Du S; Huang P; Tang C; Du J; Jin H
    Am J Physiol Regul Integr Comp Physiol; 2016 Jun; 310(11):R1073-80. PubMed ID: 27009048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential relaxing responses to particulate or soluble guanylyl cyclase activation on endothelial cells: a mechanism dependent on PKG-I alpha activation by NO/cGMP.
    Rivero-Vilches FJ; de Frutos S; Saura M; Rodriguez-Puyol D; Rodriguez-Puyol M
    Am J Physiol Cell Physiol; 2003 Oct; 285(4):C891-8. PubMed ID: 12814915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiol oxidation inhibits nitric oxide-mediated pulmonary artery relaxation and guanylate cyclase stimulation.
    Mingone CJ; Gupte SA; Ali N; Oeckler RA; Wolin MS
    Am J Physiol Lung Cell Mol Physiol; 2006 Mar; 290(3):L549-57. PubMed ID: 16272175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential role of mitochondrial superoxide decreasing ferrochelatase and heme in coronary artery soluble guanylate cyclase depletion by angiotensin II.
    Patel D; Alhawaj R; Kelly MR; Accarino JJ; Lakhkar A; Gupte SA; Sun D; Wolin MS
    Am J Physiol Heart Circ Physiol; 2016 Jun; 310(11):H1439-47. PubMed ID: 27037373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preservation of nitric oxide-induced relaxation of porcine coronary artery: roles of the dimers of soluble guanylyl cyclase, phosphodiesterase type 5, and cGMP-dependent protein kinase.
    Liu J; Chen Z; Ye L; Liu H; Dou D; Liu L; Yu X; Gao Y
    Pflugers Arch; 2014 Oct; 466(10):1999-2008. PubMed ID: 24413911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADPH and heme redox modulate pulmonary artery relaxation and guanylate cyclase activation by NO.
    Gupte SA; Rupawalla T; Phillibert D; Wolin MS
    Am J Physiol; 1999 Dec; 277(6):L1124-32. PubMed ID: 10600882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of vasodilator-stimulated phosphoprotein: a consequence of nitric oxide- and cGMP-mediated signal transduction in brain capillary endothelial cells and astrocytes.
    Sporbert A; Mertsch K; Smolenski A; Haseloff RF; Schönfelder G; Paul M; Ruth P; Walter U; Blasig IE
    Brain Res Mol Brain Res; 1999 Apr; 67(2):258-66. PubMed ID: 10216224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.