These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 21927593)

  • 1. Adaptive movable neural interfaces for monitoring single neurons in the brain.
    Muthuswamy J; Anand S; Sridharan A
    Front Neurosci; 2011; 5():94. PubMed ID: 21927593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-Term Neural Recordings Using MEMS Based Movable Microelectrodes in the Brain.
    Jackson N; Sridharan A; Anand S; Baker M; Okandan M; Muthuswamy J
    Front Neuroeng; 2010; 3():10. PubMed ID: 20617188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Ti3C2 MXene Microelectrode Arrays for In Vivo Neural Recording.
    Driscoll N; Maleski K; Richardson AG; Murphy B; Anasori B; Lucas TH; Gogotsi Y; Vitale F
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32116295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
    Patil AC; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering microscale systems for fully autonomous intracellular neural interfaces.
    Kumar SS; Baker MS; Okandan M; Muthuswamy J
    Microsyst Nanoeng; 2020; 6():1. PubMed ID: 34567616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implantable computer-controlled adaptive multielectrode positioning system.
    Ferrea E; Suriya-Arunroj L; Hoehl D; Thomas U; Gail A
    J Neurophysiol; 2018 Apr; 119(4):1471-1484. PubMed ID: 29187552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomous control for mechanically stable navigation of microscale implants in brain tissue to record neural activity.
    Anand S; Kumar SS; Muthuswamy J
    Biomed Microdevices; 2016 Aug; 18(4):72. PubMed ID: 27457752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces.
    Kozai TD; Langhals NB; Patel PR; Deng X; Zhang H; Smith KL; Lahann J; Kotov NA; Kipke DR
    Nat Mater; 2012 Dec; 11(12):1065-73. PubMed ID: 23142839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implantable Neural Microelectrodes: How to Reduce Immune Response.
    Xiang Y; Zhao Y; Cheng T; Sun S; Wang J; Pei R
    ACS Biomater Sci Eng; 2024 May; 10(5):2762-2783. PubMed ID: 38591141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implantable microscale neural interfaces.
    Cheung KC
    Biomed Microdevices; 2007 Dec; 9(6):923-38. PubMed ID: 17252207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes.
    Vitale F; Summerson SR; Aazhang B; Kemere C; Pasquali M
    ACS Nano; 2015; 9(4):4465-74. PubMed ID: 25803728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thinking Small: Progress on Microscale Neurostimulation Technology.
    Pancrazio JJ; Deku F; Ghazavi A; Stiller AM; Rihani R; Frewin CL; Varner VD; Gardner TJ; Cogan SF
    Neuromodulation; 2017 Dec; 20(8):745-752. PubMed ID: 29076214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implantable intracortical microelectrodes: reviewing the present with a focus on the future.
    Wang Y; Yang X; Zhang X; Wang Y; Pei W
    Microsyst Nanoeng; 2023; 9():7. PubMed ID: 36620394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex.
    Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in three-dimensional microelectrode array technologies for in vitro and in vivo cardiac and neuronal interfaces.
    Choi JS; Lee HJ; Rajaraman S; Kim DH
    Biosens Bioelectron; 2021 Jan; 171():112687. PubMed ID: 33059168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation.
    Kim R; Nam Y
    J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free-Standing Nanofilm Electrode Arrays for Long-Term Stable Neural Interfacings.
    Gao L; Wang J; Zhao Y; Li H; Liu M; Ding J; Tian H; Guan S; Fang Y
    Adv Mater; 2022 Feb; 34(5):e2107343. PubMed ID: 34796566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications.
    Jorfi M; Skousen JL; Weder C; Capadona JR
    J Neural Eng; 2015 Feb; 12(1):011001. PubMed ID: 25460808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.