These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 21927822)

  • 41. Nonlinear finite element model predicts vertebral bone strength and fracture site.
    Imai K; Ohnishi I; Bessho M; Nakamura K
    Spine (Phila Pa 1976); 2006 Jul; 31(16):1789-94. PubMed ID: 16845352
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Detailed subject-specific FE rib modeling for fracture prediction.
    Iraeus J; Lundin L; Storm S; Agnew A; Kang YS; Kemper A; Albert D; Holcombe S; Pipkorn B
    Traffic Inj Prev; 2019; 20(sup2):S88-S95. PubMed ID: 31589083
    [No Abstract]   [Full Text] [Related]  

  • 43. Prediction of incident vertebral fractures in routine MDCT: Comparison of global texture features, 3D finite element parameters and volumetric BMD.
    Dieckmeyer M; Rayudu NM; Yeung LY; Löffler M; Sekuboyina A; Burian E; Sollmann N; Kirschke JS; Baum T; Subburaj K
    Eur J Radiol; 2021 Aug; 141():109827. PubMed ID: 34225250
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomechanical effects of cement distribution in the fractured area on osteoporotic vertebral compression fractures: a three-dimensional finite element analysis.
    Liang D; Ye LQ; Jiang XB; Yang P; Zhou GQ; Yao ZS; Zhang SC; Yang ZD
    J Surg Res; 2015 May; 195(1):246-56. PubMed ID: 25634828
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Finite element analysis of wedge and biconcave deformity in four different height restoration after augmentation of osteoporotic vertebral compression fractures.
    Zuo XH; Chen YB; Xie P; Zhang WD; Xue XY; Zhang QX; Shan B; Zhang XB; Bao HG; Si YN
    J Orthop Surg Res; 2021 Feb; 16(1):138. PubMed ID: 33588890
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vertebral strength prediction from Bi-Planar dual energy x-ray absorptiometry under anterior compressive force using a finite element model: An in vitro study.
    Choisne J; Valiadis JM; Travert C; Kolta S; Roux C; Skalli W
    J Mech Behav Biomed Mater; 2018 Nov; 87():190-196. PubMed ID: 30077078
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Material properties of human vertebral trabecular bone under compression can be predicted based on quantitative computed tomography.
    Gehweiler D; Schultz M; Schulze M; Riesenbeck O; Wähnert D; Raschke MJ
    BMC Musculoskelet Disord; 2021 Aug; 22(1):709. PubMed ID: 34407777
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Micromechanics of the human vertebral body for forward flexion.
    Yang H; Nawathe S; Fields AJ; Keaveny TM
    J Biomech; 2012 Aug; 45(12):2142-8. PubMed ID: 22704826
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Opportunistic screening for osteoporosis using thoraco-abdomino-pelvic CT-scan assessing the vertebral density in rheumatoid arthritis patients.
    Perrier-Cornet J; Omorou AY; Fauny M; Loeuille D; Chary-Valckenaere I
    Osteoporos Int; 2019 Jun; 30(6):1215-1222. PubMed ID: 30868182
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty.
    Liebschner MA; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2001 Jul; 26(14):1547-54. PubMed ID: 11462084
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biomechanical analysis for stress fractures of the anterior middle third of the tibia in athletes: nonlinear analysis using a three-dimensional finite element method.
    Sonoda N; Chosa E; Totoribe K; Tajima N
    J Orthop Sci; 2003; 8(4):505-13. PubMed ID: 12898301
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Parametric finite element analysis of vertebral bodies affected by tumors.
    Whyne CM; Hu SS; Lotz JC
    J Biomech; 2001 Oct; 34(10):1317-24. PubMed ID: 11522311
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Discordance between Prevalent Vertebral Fracture and Vertebral Strength Estimated by the Finite Element Method Based on Quantitative Computed Tomography in Patients with Type 2 Diabetes Mellitus.
    Kiyohara N; Yamamoto M; Sugimoto T
    PLoS One; 2015; 10(12):e0144496. PubMed ID: 26642210
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sagittal balance of the spine in patients with osteoporotic vertebral fractures.
    Fechtenbaum J; Etcheto A; Kolta S; Feydy A; Roux C; Briot K
    Osteoporos Int; 2016 Feb; 27(2):559-67. PubMed ID: 26272312
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optimizing bone cement stiffness for vertebroplasty through biomechanical effects analysis based on patient-specific three-dimensional finite element modeling.
    Peng Y; Du X; Huang L; Li J; Zhan R; Wang W; Xu B; Wu S; Peng C; Chen S
    Med Biol Eng Comput; 2018 Nov; 56(11):2137-2150. PubMed ID: 29806053
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biomechanical evaluation of calcium phosphate-based nanocomposite versus polymethylmethacrylate cement for percutaneous kyphoplasty.
    Lu Q; Liu C; Wang D; Liu H; Yang H; Yang L
    Spine J; 2019 Nov; 19(11):1871-1884. PubMed ID: 31202837
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men.
    Vilayphiou N; Boutroy S; Szulc P; van Rietbergen B; Munoz F; Delmas PD; Chapurlat R
    J Bone Miner Res; 2011 May; 26(5):965-73. PubMed ID: 21541999
    [TBL] [Abstract][Full Text] [Related]  

  • 58. How accurately can we predict the fracture load of the proximal femur using finite element models?
    van den Munckhof S; Zadpoor AA
    Clin Biomech (Bristol, Avon); 2014 Apr; 29(4):373-80. PubMed ID: 24485865
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Apparent Young's modulus of vertebral cortico-cancellous bone specimens.
    El Masri F; Sapin de Brosses E; Rhissassi K; Skalli W; Mitton D
    Comput Methods Biomech Biomed Engin; 2012; 15(1):23-8. PubMed ID: 21749276
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Load distribution and the predictive power of morphological indices in the distal radius and tibia by high resolution peripheral quantitative computed tomography.
    MacNeil JA; Boyd SK
    Bone; 2007 Jul; 41(1):129-37. PubMed ID: 17442649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.