These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 21927912)

  • 1. Variation in songbird migratory behavior offers clues about adaptability to environmental change.
    Calvert AM; Mackenzie SA; Flemming JM; Taylor PD; Walde SJ
    Oecologia; 2012 Mar; 168(3):849-61. PubMed ID: 21927912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stopover departure decisions in songbirds: do long-distance migrants depart earlier and more independently of weather conditions than medium-distance migrants?
    Packmor F; Klinner T; Woodworth BK; Eikenaar C; Schmaljohann H
    Mov Ecol; 2020; 8():6. PubMed ID: 32047634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nocturnal departure timing in songbirds facing distinct migratory challenges.
    Müller F; Eikenaar C; Crysler ZJ; Taylor PD; Schmaljohann H
    J Anim Ecol; 2018 Jul; 87(4):1102-1115. PubMed ID: 29504627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The response of migratory populations to phenological change: a Migratory Flow Network modelling approach.
    Taylor CM; Laughlin AJ; Hall RJ
    J Anim Ecol; 2016 May; 85(3):648-59. PubMed ID: 26782029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relative influence of cross-seasonal and local weather effects on the breeding success of a migratory songbird.
    de Zwaan DR; Drake A; Camfield AF; MacDonald EC; Martin K
    J Anim Ecol; 2022 Jul; 91(7):1458-1470. PubMed ID: 35426953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stopover refuelling, movement and departure decisions in the white-throated sparrow: The influence of intrinsic and extrinsic factors during spring migration.
    Beauchamp AT; Guglielmo CG; Morbey YE
    J Anim Ecol; 2020 Nov; 89(11):2553-2566. PubMed ID: 32770676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corticosterone and timing of migratory departure in a songbird.
    Eikenaar C; Müller F; Leutgeb C; Hessler S; Lebus K; Taylor PD; Schmaljohann H
    Proc Biol Sci; 2017 Jan; 284(1846):. PubMed ID: 28077768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. El Niño-Southern Oscillation is linked to decreased energetic condition in long-distance migrants.
    Paxton KL; Cohen EB; Paxton EH; Németh Z; Moore FR
    PLoS One; 2014; 9(5):e95383. PubMed ID: 24788978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fuel loads acquired at a stopover site influence the pace of intercontinental migration in a boreal songbird.
    Gómez C; Bayly NJ; Norris DR; Mackenzie SA; Rosenberg KV; Taylor PD; Hobson KA; Daniel Cadena C
    Sci Rep; 2017 Jun; 7(1):3405. PubMed ID: 28611372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cold spell en route delays spring arrival and decreases apparent survival in a long-distance migratory songbird.
    Briedis M; Hahn S; Adamík P
    BMC Ecol; 2017 Apr; 17(1):11. PubMed ID: 28376915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Earlier and slower or later and faster: Spring migration pace linked to departure time in a Neotropical migrant songbird.
    González AM; Bayly NJ; Hobson KA
    J Anim Ecol; 2020 Dec; 89(12):2840-2851. PubMed ID: 32989739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoperiodic response may facilitate adaptation to climatic change in long-distance migratory birds.
    Coppack T; Pulido F; Czisch M; Auer DP; Berthold P
    Proc Biol Sci; 2003 Aug; 270 Suppl 1(Suppl 1):S43-6. PubMed ID: 12952632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune function and blood parasite infections impact stopover ecology in passerine birds.
    Hegemann A; Alcalde Abril P; Muheim R; Sjöberg S; Alerstam T; Nilsson JÅ; Hasselquist D
    Oecologia; 2018 Dec; 188(4):1011-1024. PubMed ID: 30386941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reed warblers migrating through Portugal: climatic influence on stopover ecology over the last decade.
    Araújo PM; da Silva LP; Paiva VH; Ramos JA
    Zoology (Jena); 2016 Jun; 119(3):232-240. PubMed ID: 26948014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent phenological shifts of migratory birds at a Mediterranean spring stopover site: Species wintering in the Sahel advance passage more than tropical winterers.
    Maggini I; Cardinale M; Sundberg JH; Spina F; Fusani L
    PLoS One; 2020; 15(9):e0239489. PubMed ID: 32946519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature change is an important departure cue in nocturnal migrants: controlled experiments with wild-caught birds in a proof-of-concept study.
    Klinner T; Schmaljohann H
    Proc Biol Sci; 2020 Oct; 287(1936):20201650. PubMed ID: 33023413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interacting effects of food, spring temperature, and global climate cycles on population dynamics of a migratory songbird.
    Townsend AK; Cooch EG; Sillett TS; Rodenhouse NL; Holmes RT; Webster MS
    Glob Chang Biol; 2016 Feb; 22(2):544-55. PubMed ID: 26242236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quasi-experimental approach using telemetry to assess migration-strategy-specific differences in the decision-making processes at stopover.
    Schmaljohann H; Klinner T
    BMC Ecol; 2020 Jul; 20(1):36. PubMed ID: 32641125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird.
    Studds CE; Marra PP
    Proc Biol Sci; 2011 Nov; 278(1723):3437-43. PubMed ID: 21450737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking from the tropics reveals behaviour of juvenile songbirds on their first spring migration.
    McKinnon EA; Fraser KC; Stanley CQ; Stutchbury BJ
    PLoS One; 2014; 9(8):e105605. PubMed ID: 25141193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.