These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21927912)

  • 21. Tracking from the tropics reveals behaviour of juvenile songbirds on their first spring migration.
    McKinnon EA; Fraser KC; Stanley CQ; Stutchbury BJ
    PLoS One; 2014; 9(8):e105605. PubMed ID: 25141193
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anthropogenic food subsidies reshape the migratory behaviour of a long-distance migrant.
    Marcelino J; Franco AMA; Acácio M; Soriano-Redondo A; Moreira F; Catry I
    Sci Total Environ; 2023 Feb; 858(Pt 3):159992. PubMed ID: 36356748
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mimicked bacterial infection prolongs stopover duration in songbirds-but more pronounced in short- than long-distance migrants.
    Hegemann A; Alcalde Abril P; Sjöberg S; Muheim R; Alerstam T; Nilsson JÅ; Hasselquist D
    J Anim Ecol; 2018 Nov; 87(6):1698-1708. PubMed ID: 30101481
    [TBL] [Abstract][Full Text] [Related]  

  • 24. During stopover, migrating blackcaps adjust behavior and intake of food depending on the content of protein in their diets.
    Aamidor SE; Bauchinger U; Mizrahy O; McWilliams SR; Pinshow B
    Integr Comp Biol; 2011 Sep; 51(3):385-93. PubMed ID: 21705790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Body fat influences departure from stopover sites in migratory birds: evidence from whole-island telemetry.
    Goymann W; Spina F; Ferri A; Fusani L
    Biol Lett; 2010 Aug; 6(4):478-81. PubMed ID: 20164077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental ghrelin administration affects migratory behaviour in a songbird.
    Lupi S; Morbey YE; MacDougall-Shackleton SA; Kaiya H; Fusani L; Guglielmo CG
    Horm Behav; 2022 May; 141():105139. PubMed ID: 35299118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Developing a Stopover-CORT hypothesis: Corticosterone predicts body composition and refueling rate in Gray Catbirds during migratory stopover.
    DeSimone JG; Ramirez MG; Elowe CR; Griego MS; Breuner CW; Gerson AR
    Horm Behav; 2020 Aug; 124():104776. PubMed ID: 32439349
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Body condition and wind support initiate the shift of migratory direction and timing of nocturnal departure in a songbird.
    Schmaljohann H; Naef-Daenzer B
    J Anim Ecol; 2011 Nov; 80(6):1115-22. PubMed ID: 21615404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Range-wide effects of breeding- and nonbreeding-season climate on the abundance of a Neotropical migrant songbird.
    Wilson S; LaDeau SL; Tøttrup AP; Marra PP
    Ecology; 2011 Sep; 92(9):1789-98. PubMed ID: 21939075
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impacts of a global climate cycle on population dynamics of a migratory songbird.
    Sillett TS; Holmes RT; Sherry TW
    Science; 2000 Jun; 288(5473):2040-2. PubMed ID: 10856216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. African departure rather than migration speed determines variation in spring arrival in pied flycatchers.
    Ouwehand J; Both C
    J Anim Ecol; 2017 Jan; 86(1):88-97. PubMed ID: 27726147
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Migratory behavior and winter geography drive differential range shifts of eastern birds in response to recent climate change.
    Rushing CS; Royle JA; Ziolkowski DJ; Pardieck KL
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12897-12903. PubMed ID: 32457137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diel variation in corticosterone and departure decision making in migrating birds.
    Eikenaar C; Schäfer J; Hessler S; Packmor F; Schmaljohann H
    Horm Behav; 2020 Jun; 122():104746. PubMed ID: 32217064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The sensitivity of breeding songbirds to changes in seasonal timing is linked to population change but cannot be directly attributed to the effects of trophic asynchrony on productivity.
    Franks SE; Pearce-Higgins JW; Atkinson S; Bell JR; Botham MS; Brereton TM; Harrington R; Leech DI
    Glob Chang Biol; 2018 Mar; 24(3):957-971. PubMed ID: 29152888
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ENSO, nest predation risk, food abundance, and male status fail to explain annual variations in the apparent survival rate of a migratory songbird.
    Vernouillet A; Villard MA; Haché S
    PLoS One; 2014; 9(11):e113844. PubMed ID: 25419839
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Weather at the winter and stopover areas determines spring migration onset, progress, and advancements in Afro-Palearctic migrant birds.
    Haest B; Hüppop O; Bairlein F
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):17056-17062. PubMed ID: 32601181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Winter rainfall predicts phenology in widely separated populations of a migrant songbird.
    McKellar AE; Marra PP; Hannon SJ; Studds CE; Ratcliffe LM
    Oecologia; 2013 Jun; 172(2):595-605. PubMed ID: 23161154
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cues, corticosterone and departure decisions in a partial migrant.
    Eikenaar C; Ballstaedt E; Hessler S; Klinner T; Müller F; Schmaljohann H
    Gen Comp Endocrinol; 2018 May; 261():59-66. PubMed ID: 29397064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Seasonal change in tropical habitat quality and body condition for a declining migratory songbird.
    McKinnon EA; Rotenberg JA; Stutchbury BJ
    Oecologia; 2015 Oct; 179(2):363-75. PubMed ID: 26001604
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Demographic response to environmental variation in breeding, stopover and non-breeding areas in a migratory passerine.
    Schaub M; Jakober H; Stauber W
    Oecologia; 2011 Oct; 167(2):445-59. PubMed ID: 21512759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.