These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21927930)

  • 21. Phenological response to climate variation in a northern red oak plantation: Links to survival and productivity.
    Knott JA; Liang L; Dukes JS; Swihart RK; Fei S
    Ecology; 2023 Mar; 104(3):e3940. PubMed ID: 36457179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The adaptive potential of Populus balsamifera L. to phenology requirements in a warmer global climate.
    Olson MS; Levsen N; Soolanayakanahally RY; Guy RD; Schroeder WR; Keller SR; Tiffin P
    Mol Ecol; 2013 Mar; 22(5):1214-30. PubMed ID: 23094714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phenotypic plasticity of natural Populus trichocarpa populations in response to temporally environmental change in a common garden.
    Liu Y; El-Kassaby YA
    BMC Evol Biol; 2019 Dec; 19(1):231. PubMed ID: 31878866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A natural heating experiment: Phenotypic and genotypic responses of plant phenology to geothermal soil warming.
    Valdés A; Marteinsdóttir B; Ehrlén J
    Glob Chang Biol; 2019 Mar; 25(3):954-962. PubMed ID: 30430704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prospective impacts of oil spills on floodplain vegetation: Both crude oil and diluted bitumen increase foliar temperatures, senescence and abscission in three cottonwood (Populus) species.
    Nielson KG; Woodman SG; Rood SB
    PLoS One; 2020; 15(3):e0230630. PubMed ID: 32218607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sixteen years of winter stress: an assessment of cold hardiness, growth performance and survival of hybrid poplar clones at a boreal planting site.
    Schreiber SG; Hamann A; Hacke UG; Thomas BR
    Plant Cell Environ; 2013 Feb; 36(2):419-28. PubMed ID: 22897210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Replicate altitudinal clines reveal that evolutionary flexibility underlies adaptation to drought stress in annual Mimulus guttatus.
    Kooyers NJ; Greenlee AB; Colicchio JM; Oh M; Blackman BK
    New Phytol; 2015 Apr; 206(1):152-165. PubMed ID: 25407964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of spectral composition on spring and autumn phenology in trees.
    Brelsford CC; Nybakken L; Kotilainen TK; Robson TM
    Tree Physiol; 2019 Jun; 39(6):925-950. PubMed ID: 30901060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative genetic architecture of adaptive phenology traits in the deciduous tree, Populus trichocarpa (Torr. and Gray).
    Richards TJ; Karacic A; Apuli RP; Weih M; Ingvarsson PK; Rönnberg-Wästljung AC
    Heredity (Edinb); 2020 Dec; 125(6):449-458. PubMed ID: 32901141
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growing Seasons of Cottonwood and Sycamore as Related to Geographic and Environmental Factors.
    Kaszkurewicz A; Fogg PJ
    Ecology; 1967 Sep; 48(5):785-793. PubMed ID: 34493001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees.
    Böhlenius H; Huang T; Charbonnel-Campaa L; Brunner AM; Jansson S; Strauss SH; Nilsson O
    Science; 2006 May; 312(5776):1040-3. PubMed ID: 16675663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contrasting plant physiological adaptation to climate in the native and introduced range of Hypericum perforatum.
    Maron JL; Elmendorf SC; Vilà M
    Evolution; 2007 Aug; 61(8):1912-24. PubMed ID: 17683433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Substantial variation in leaf senescence times among 1360 temperate woody plant species: implications for phenology and ecosystem processes.
    Panchen ZA; Primack RB; Gallinat AS; Nordt B; Stevens AD; Du Y; Fahey R
    Ann Bot; 2015 Nov; 116(6):865-73. PubMed ID: 25808654
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Leaf-out phenology of temperate woody plants: from trees to ecosystems.
    Polgar CA; Primack RB
    New Phytol; 2011 Sep; 191(4):926-941. PubMed ID: 21762163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shifts in the temperature-sensitive periods for spring phenology in European beech and pedunculate oak clones across latitudes and over recent decades.
    Wenden B; Mariadassou M; Chmielewski FM; Vitasse Y
    Glob Chang Biol; 2020 Mar; 26(3):1808-1819. PubMed ID: 31724292
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive variation in fall cold hardiness of aspen from northwestern Ontario.
    Weng YH; Parker WH
    Tree Physiol; 2008 Jan; 28(1):143-50. PubMed ID: 17938123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phenology of temperate trees in tropical climates.
    Borchert R; Robertson K; Schwartz MD; Williams-Linera G
    Int J Biometeorol; 2005 Sep; 50(1):57-65. PubMed ID: 15812667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flood regime and leaf fall determine soil inorganic nitrogen dynamics in semiarid riparian forests.
    Shah JJ; Dahm CN
    Ecol Appl; 2008 Apr; 18(3):771-88. PubMed ID: 18488634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relative importance of genetic, ontogenetic, induction, and seasonal variation in producing a multivariate defense phenotype in a foundation tree species.
    Holeski LM; Hillstrom ML; Whitham TG; Lindroth RL
    Oecologia; 2012 Nov; 170(3):695-707. PubMed ID: 22652923
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growth pattern responses to photoperiod across latitudes in a northern damselfly.
    Sniegula S; Nilsson-Örtman V; Johansson F
    PLoS One; 2012; 7(9):e46024. PubMed ID: 23029371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.