These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 21928139)

  • 1. Changes in the fatty acid composition of thymic and solid ehrlich carcinoma cells in mice under exposure to extremely high frequency electromagnetic radiation.
    Kulagina TP; Aripovsky AV; Gapeyev AB; Chemeris NK
    Dokl Biochem Biophys; 2011; 439():178-81. PubMed ID: 21928139
    [No Abstract]   [Full Text] [Related]  

  • 2. Exposure of tumor-bearing mice to extremely high-frequency electromagnetic radiation modifies the composition of fatty acids in thymocytes and tumor tissue.
    Gapeyev AB; Kulagina TP; Aripovsky AV
    Int J Radiat Biol; 2013 Aug; 89(8):602-10. PubMed ID: 23484905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in fatty acid composition of thymus cells, liver, blood plasma, and muscle tissue in mice with solid Ehrlich carcinoma.
    Kulagina TP; Aripovsky AV; Gapeyev AB
    Biochemistry (Mosc); 2012 Feb; 77(2):187-93. PubMed ID: 22348479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty Acid Content and Tumor Growth Changes in Mice After Exposure to Extremely High-Frequency Electromagnetic Radiation and Consumption of N-3 Fatty Acids.
    Gapeyev AB; Aripovsky AV; Kulagina TP
    Nutr Cancer; 2019; 71(8):1325-1334. PubMed ID: 30990087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modifying effects of low-intensity extremely high-frequency electromagnetic radiation on content and composition of fatty acids in thymus of mice exposed to X-rays.
    Gapeyev AB; Aripovsky AV; Kulagina TP
    Int J Radiat Biol; 2015 Mar; 91(3):277-85. PubMed ID: 25347148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of electromagnetic radiation of extremely high frequencies on the fatty-acid composition of mouse thymic cells in normal state and in systemic inflammation.
    Kulagina TP; Aripovsky AV; Gapeyev AB; Chemeris NK
    Dokl Biochem Biophys; 2010; 435():312-5. PubMed ID: 21184301
    [No Abstract]   [Full Text] [Related]  

  • 7. Cell proliferation in the thymus of Ehrlich ascites tumor bearing mice.
    Suciu D; Uray Z
    Neoplasma; 1979; 26(3):275-80. PubMed ID: 530335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Antitumor effect of low-intensity extremely high-frequency electromagnetic radiation on a model of solid Ehrlich carcinoma].
    Gapeev AB; Shved DM; Mikhaĭlik EN; Korystov IuN; Levitman MKh; Shaposhnikova VV; Sadovnikov VB; Alekhin AI; Goncharov NG; Chemeris NK
    Biofizika; 2009; 54(6):1128-36. PubMed ID: 20067195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of infrared and X-ray radiation on thymus cells and the rate of growth of Ehrlich carcinoma.
    Dyukina AR; Zaichkina SI; Rozanova OM; Aptikaeva GF; Romanchenko SP; Sorokina SS
    Bull Exp Biol Med; 2012 Sep; 153(5):671-3. PubMed ID: 23113254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth-inhibition effects of oleic acid, linoleic acid, and their methyl esters on transplanted tumors in mice.
    Zhu YP; Su ZW; Li CH
    J Natl Cancer Inst; 1989 Sep; 81(17):1302-6. PubMed ID: 2769782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Hypoxia of tumor cells and its role in fractionated irradiation].
    Waĭnson AA; Podsvirova VP; Meshcherikova VV
    Med Radiol (Mosk); 1975 Jan; 20(1):41-6. PubMed ID: 1128189
    [No Abstract]   [Full Text] [Related]  

  • 12. [Morphologic changes in the thymus gland in myasthenia under the effect of radiation therapy].
    Kop'eva TN
    Arkh Patol; 1968; 30(7):13-9. PubMed ID: 5727112
    [No Abstract]   [Full Text] [Related]  

  • 13. Virus particles in relation to radiation-induced changes in the thymus of C 3 H mice.
    Järplid B
    Acta Radiol Ther Phys Biol; 1972 Oct; 11(5):422-32. PubMed ID: 4649690
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of extremely-low-frequency electromagnetic fields on ion transport in several mammalian cells.
    García-Sancho J; Montero M; Alvarez J; Fonteriz RI; Sanchez A
    Bioelectromagnetics; 1994; 15(6):579-88. PubMed ID: 7880171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of fatty acids in anti-inflammatory effects of low-intensity extremely high-frequency electromagnetic radiation.
    Gapeyev AB; Kulagina TP; Aripovsky AV; Chemeris NK
    Bioelectromagnetics; 2011 Jul; 32(5):388-95. PubMed ID: 21287568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modifications of the thymic cell population during the development of the radiation-induced lymphoma in mice.
    Boniver J; Delrez M; Simar LJ; Haot J
    Beitr Pathol; 1973 Dec; 150(3):229-45. PubMed ID: 4589150
    [No Abstract]   [Full Text] [Related]  

  • 17. Lipid peroxidation induced by ultrasonication in Ehrlich ascitic tumor cells.
    Hristov PK; Petrov LA; Russanov EM
    Cancer Lett; 1997 Dec; 121(1):7-10. PubMed ID: 9459167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lack of effect of the Ca2+ ionophore A23187 on tumour cells.
    Cittadini A; Bossi D; Dani AM; Calviello G; Wolf F; Terranova T
    Biochim Biophys Acta; 1981 Jul; 645(2):177-82. PubMed ID: 6791688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Fluorometric analysis of the formation and repair of DNA breaks in irradiated cells].
    Riabchenko NI; Proskuriakov SIa; Ivannik BP; Kutmin AI
    Radiobiologiia; 1984; 24(2):154-7. PubMed ID: 6729058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preleukemic cells and radiation-induced thymoma.
    Maisin JR; Léonard A; Mattelin G
    Biomedicine; 1980 Apr; 33(2):47-9. PubMed ID: 6996754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.