BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 21928765)

  • 1. Altering residues N125 and D149 impacts sugar effector binding and allosteric parameters in Escherichia coli lactose repressor.
    Xu J; Liu S; Chen M; Ma J; Matthews KS
    Biochemistry; 2011 Oct; 50(42):9002-13. PubMed ID: 21928765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexibility in the inducer binding region is crucial for allostery in the Escherichia coli lactose repressor.
    Xu J; Matthews KS
    Biochemistry; 2009 Jun; 48(22):4988-98. PubMed ID: 19368358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perturbation from a distance: mutations that alter LacI function through long-range effects.
    Swint-Kruse L; Zhan H; Fairbanks BM; Maheshwari A; Matthews KS
    Biochemistry; 2003 Dec; 42(47):14004-16. PubMed ID: 14636069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering alternate cooperative-communications in the lactose repressor protein scaffold.
    Meyer S; Ramot R; Kishore Inampudi K; Luo B; Lin C; Amere S; Wilson CJ
    Protein Eng Des Sel; 2013 Jun; 26(6):433-43. PubMed ID: 23587523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring DNA binding to Escherichia coli lactose repressor using quartz crystal microbalance with dissipation.
    Xu J; Liu KW; Matthews KS; Biswal SL
    Langmuir; 2011 Apr; 27(8):4900-5. PubMed ID: 21410208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered disulfide linking the hinge regions within lactose repressor dimer increases operator affinity, decreases sequence selectivity, and alters allostery.
    Falcon CM; Matthews KS
    Biochemistry; 2001 Dec; 40(51):15650-9. PubMed ID: 11747440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated insights from simulation, experiment, and mutational analysis yield new details of LacI function.
    Swint-Kruse L; Zhan H; Matthews KS
    Biochemistry; 2005 Aug; 44(33):11201-13. PubMed ID: 16101304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designed disulfide between N-terminal domains of lactose repressor disrupts allosteric linkage.
    Falcon CM; Swint-Kruse L; Matthews KS
    J Biol Chem; 1997 Oct; 272(43):26818-21. PubMed ID: 9341111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escherichia coli lac repressor-lac operator interaction and the influence of allosteric effectors.
    Horton N; Lewis M; Lu P
    J Mol Biol; 1997 Jan; 265(1):1-7. PubMed ID: 8995519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positions 94-98 of the lactose repressor N-subdomain monomer-monomer interface are critical for allosteric communication.
    Zhan H; Camargo M; Matthews KS
    Biochemistry; 2010 Oct; 49(39):8636-45. PubMed ID: 20804152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strengthening the dimerisation interface of Lac repressor increases its thermostability by 40 deg. C.
    Gerk LP; Leven O; Müller-Hill B
    J Mol Biol; 2000 Jun; 299(3):805-12. PubMed ID: 10835285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A closer view of the conformation of the Lac repressor bound to operator.
    Bell CE; Lewis M
    Nat Struct Biol; 2000 Mar; 7(3):209-14. PubMed ID: 10700279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Operator DNA sequence variation enhances high affinity binding by hinge helix mutants of lactose repressor protein.
    Falcon CM; Matthews KS
    Biochemistry; 2000 Sep; 39(36):11074-83. PubMed ID: 10998245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The side-chain of the amino acid residue in position 110 of the Lac repressor influences its allosteric equilibrium.
    Müller-Hartmann H; Müller-Hill B
    J Mol Biol; 1996 Apr; 257(3):473-8. PubMed ID: 8648615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycine insertion in the hinge region of lactose repressor protein alters DNA binding.
    Falcon CM; Matthews KS
    J Biol Chem; 1999 Oct; 274(43):30849-57. PubMed ID: 10521477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substitutions at histidine 74 and aspartate 278 alter ligand binding and allostery in lactose repressor protein.
    Barry JK; Matthews KS
    Biochemistry; 1999 Mar; 38(12):3579-90. PubMed ID: 10090744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand interactions with lactose repressor protein and the repressor-operator complex: the effects of ionization and oligomerization on binding.
    Wilson CJ; Zhan H; Swint-Kruse L; Matthews KS
    Biophys Chem; 2007 Mar; 126(1-3):94-105. PubMed ID: 16860458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer.
    Lewis M; Chang G; Horton NC; Kercher MA; Pace HC; Schumacher MA; Brennan RG; Lu P
    Science; 1996 Mar; 271(5253):1247-54. PubMed ID: 8638105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulated pressure changes in LacI suggest a link between hydration and functional conformational changes.
    Kariyawasam NL; Ploetz EA; Swint-Kruse L; Smith PE
    Biophys Chem; 2024 Jan; 304():107126. PubMed ID: 37924711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering an allosteric transcription factor to respond to new ligands.
    Taylor ND; Garruss AS; Moretti R; Chan S; Arbing MA; Cascio D; Rogers JK; Isaacs FJ; Kosuri S; Baker D; Fields S; Church GM; Raman S
    Nat Methods; 2016 Feb; 13(2):177-83. PubMed ID: 26689263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.