BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 21928780)

  • 1. Model system to study the influence of aggregation on the hemolytic potential of silica nanoparticles.
    Thomassen LC; Rabolli V; Masschaele K; Alberto G; Tomatis M; Ghiazza M; Turci F; Breynaert E; Martra G; Kirschhock CE; Martens JA; Lison D; Fubini B
    Chem Res Toxicol; 2011 Nov; 24(11):1869-75. PubMed ID: 21928780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity.
    Lin YS; Haynes CL
    J Am Chem Soc; 2010 Apr; 132(13):4834-42. PubMed ID: 20230032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation of silica nanoparticles directed by adsorption of lysozyme.
    Bharti B; Meissner J; Findenegg GH
    Langmuir; 2011 Aug; 27(16):9823-33. PubMed ID: 21728288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects.
    Zhao Y; Sun X; Zhang G; Trewyn BG; Slowing II; Lin VS
    ACS Nano; 2011 Feb; 5(2):1366-75. PubMed ID: 21294526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemolytic properties of synthetic nano- and porous silica particles: the effect of surface properties and the protection by the plasma corona.
    Shi J; Hedberg Y; Lundin M; Odnevall Wallinder I; Karlsson HL; Möller L
    Acta Biomater; 2012 Sep; 8(9):3478-90. PubMed ID: 22522009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SANS study to probe nanoparticle dispersion in nanocomposite membranes of aromatic polyamide and functionalized silica nanoparticles.
    Jadav GL; Aswal VK; Singh PS
    J Colloid Interface Sci; 2010 Nov; 351(1):304-14. PubMed ID: 20701923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells.
    Slowing II; Wu CW; Vivero-Escoto JL; Lin VS
    Small; 2009 Jan; 5(1):57-62. PubMed ID: 19051185
    [No Abstract]   [Full Text] [Related]  

  • 8. Formation of rodlike silica aggregates directed by adsorbed thermoresponsive polymer chains.
    Babayan D; Chassenieux C; Lafuma F; Ventelon L; Hernandez J
    Langmuir; 2010 Feb; 26(4):2279-87. PubMed ID: 19924988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface modified ormosil nanoparticles.
    Sharma RK; Das S; Maitra A
    J Colloid Interface Sci; 2004 Sep; 277(2):342-6. PubMed ID: 15341845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the silica surfaces by red blood cells.
    Gerashchenko BI; Gun'ko VM; Gerashchenko II; Mironyuk IF; Leboda R; Hosoya H
    Cytometry; 2002 Oct; 49(2):56-61. PubMed ID: 12357460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles.
    Choi J; Reipa V; Hitchins VM; Goering PL; Malinauskas RA
    Toxicol Sci; 2011 Sep; 123(1):133-43. PubMed ID: 21652737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Onion phases as biomimetic confined media for silica nanoparticle growth.
    El Rassy H; Belamie E; Livage J; Coradin T
    Langmuir; 2005 Sep; 21(19):8584-7. PubMed ID: 16142930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cytotoxic activity of amorphous silica nanoparticles is mainly influenced by surface area and not by aggregation.
    Rabolli V; Thomassen LC; Uwambayinema F; Martens JA; Lison D
    Toxicol Lett; 2011 Oct; 206(2):197-203. PubMed ID: 21803137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell membrane damage and protein interaction induced by copper containing nanoparticles--importance of the metal release process.
    Karlsson HL; Cronholm P; Hedberg Y; Tornberg M; De Battice L; Svedhem S; Wallinder IO
    Toxicology; 2013 Nov; 313(1):59-69. PubMed ID: 23891735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of stable monodisperse silica nanoparticle sols for in vitro cytotoxicity testing.
    Thomassen LC; Aerts A; Rabolli V; Lison D; Gonzalez L; Kirsch-Volders M; Napierska D; Hoet PH; Kirschhock CE; Martens JA
    Langmuir; 2010 Jan; 26(1):328-35. PubMed ID: 19697952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mesoporous silica nanoparticle with charge-convertible pore walls for efficient intracellular protein delivery.
    Park HS; Kim CW; Lee HJ; Choi JH; Lee SG; Yun YP; Kwon IC; Lee SJ; Jeong SY; Lee SC
    Nanotechnology; 2010 Jun; 21(22):225101. PubMed ID: 20453291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SANS and UV-vis spectroscopy studies of resultant structure from lysozyme adsorption on silica nanoparticles.
    Kumar S; Aswal VK; Kohlbrecher J
    Langmuir; 2011 Aug; 27(16):10167-73. PubMed ID: 21707044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of poly-L-glutamic acid grafted silica nanoparticles and their assembly into macroporous structures.
    Kar M; Pauline M; Sharma K; Kumaraswamy G; Gupta SS
    Langmuir; 2011 Oct; 27(19):12124-33. PubMed ID: 21863899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel zwitterionic-polymer-coated silica nanoparticles.
    Jia G; Cao Z; Xue H; Xu Y; Jiang S
    Langmuir; 2009 Mar; 25(5):3196-9. PubMed ID: 19437722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of aerosil on erythrocyte surface by flow cytometry measurements.
    Gerashchenko BI; Gerashchenko II; Bogomaz VI; Pantazis CG
    Cytometry; 1994 Jan; 15(1):80-3. PubMed ID: 8162828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.