These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 21928788)

  • 1. Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing.
    Pryce IM; Kelaita YA; Aydin K; Atwater HA
    ACS Nano; 2011 Oct; 5(10):8167-74. PubMed ID: 21928788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visible transmission response of nanoscale complementary metamaterials for sensing applications.
    Liu Z; Xia X; Sun Y; Yang H; Chen R; Liu B; Quan B; Li J; Gu C
    Nanotechnology; 2012 Jul; 23(27):275503. PubMed ID: 22706679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the tunable response of highly strained compliant optical metamaterials.
    Pryce IM; Aydin K; Kelaita YA; Briggs RM; Atwater HA
    Philos Trans A Math Phys Eng Sci; 2011 Sep; 369(1950):3447-55. PubMed ID: 21807720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Higher order Fano graphene metamaterials for nanoscale optical sensing.
    Guo X; Hu H; Zhu X; Yang X; Dai Q
    Nanoscale; 2017 Oct; 9(39):14998-15004. PubMed ID: 28956583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional optical metamaterial with a negative refractive index.
    Valentine J; Zhang S; Zentgraf T; Ulin-Avila E; Genov DA; Bartal G; Zhang X
    Nature; 2008 Sep; 455(7211):376-9. PubMed ID: 18690249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs.
    Yue W; Wang Z; Whittaker J; Schedin F; Wu Z; Han J
    Nanotechnology; 2016 Feb; 27(5):055303. PubMed ID: 26751676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing.
    Hao F; Nordlander P; Sonnefraud Y; Van Dorpe P; Maier SA
    ACS Nano; 2009 Mar; 3(3):643-52. PubMed ID: 19309172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy.
    Bukasov R; Shumaker-Parry JS
    Anal Chem; 2009 Jun; 81(11):4531-5. PubMed ID: 19408957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High aspect ratio plasmonic nanostructures for sensing applications.
    Päivänranta B; Merbold H; Giannini R; Büchi L; Gorelick S; David C; Löffler JF; Feurer T; Ekinci Y
    ACS Nano; 2011 Aug; 5(8):6374-82. PubMed ID: 21744855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly strained compliant optical metamaterials with large frequency tunability.
    Pryce IM; Aydin K; Kelaita YA; Briggs RM; Atwater HA
    Nano Lett; 2010 Oct; 10(10):4222-7. PubMed ID: 20857941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency tunable near-infrared metamaterials based on VO2 phase transition.
    Dicken MJ; Aydin K; Pryce IM; Sweatlock LA; Boyd EM; Walavalkar S; Ma J; Atwater HA
    Opt Express; 2009 Sep; 17(20):18330-9. PubMed ID: 19907624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-Band Plasmonic Perfect Absorber Based on Graphene Metamaterials for Refractive Index Sensing Application.
    Yi Z; Liang C; Chen X; Zhou Z; Tang Y; Ye X; Yi Y; Wang J; Wu P
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31269630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering.
    Wen X; Li G; Zhang J; Zhang Q; Peng B; Wong LM; Wang S; Xiong Q
    Nanoscale; 2014 Jan; 6(1):132-9. PubMed ID: 24192898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave and terahertz wave sensing with metamaterials.
    Tao H; Kadlec EA; Strikwerda AC; Fan K; Padilla WJ; Averitt RD; Shaner EA; Zhang X
    Opt Express; 2011 Oct; 19(22):21620-6. PubMed ID: 22109011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates.
    Han NR; Chen ZC; Lim CS; Ng B; Hong MH
    Opt Express; 2011 Apr; 19(8):6990-8. PubMed ID: 21503013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved analysis of THz metamaterials for glucose sensing based on modified Lorentz dispersion model.
    Lee G; Cho Y; Ok G
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 293():122519. PubMed ID: 36812756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring alphabetical metamaterials in optical frequency: plasmonic coupling, dispersion, and sensing.
    Zhang J; Cao C; Xu X; Liow C; Li S; Tan P; Xiong Q
    ACS Nano; 2014 Apr; 8(4):3796-806. PubMed ID: 24670107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional photonic metamaterials at optical frequencies.
    Liu N; Guo H; Fu L; Kaiser S; Schweizer H; Giessen H
    Nat Mater; 2008 Jan; 7(1):31-7. PubMed ID: 18059275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Infrared-Compatible Nanofluidic Devices for Plasmon-Enhanced Infrared Absorption Spectroscopy.
    Le THH; Matsushita T; Ohta R; Shimoda Y; Matsui H; Kitamori T
    Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33266007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging.
    Kühner L; Hentschel M; Zschieschang U; Klauk H; Vogt J; Huck C; Giessen H; Neubrech F
    ACS Sens; 2017 May; 2(5):655-662. PubMed ID: 28723169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.