These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 21928983)

  • 1. Dynamics of a wetting layer and Marangoni convection in microgravity.
    Oprisan A; Hegseth JJ; Smith GM; Lecoutre C; Garrabos Y; Beysens DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021202. PubMed ID: 21928983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimple coalescence and liquid droplets distributions during phase separation in a pure fluid under microgravity.
    Oprisan A; Oprisan SA; Hegseth JJ; Garrabos Y; Lecoutre-Chabot C; Beysens D
    Eur Phys J E Soft Matter; 2014 Sep; 37(9):41. PubMed ID: 25260326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring the Transition Rates of Coalescence Events during Double Phase Separation in Microgravity.
    Oprisan A; Garrabos Y; Lecoutre C; Beysens D
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28684705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical investigation of bubble-induced Marangoni convection.
    O'Shaughnessy SM; Robinson AJ
    Ann N Y Acad Sci; 2009 Apr; 1161():304-20. PubMed ID: 19426328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universality in early-stage growth of phase-separating domains near the critical point.
    Oprisan A; Oprisan SA; Hegseth JJ; Garrabos Y; Lecoutre-Chabot C; Beysens D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051118. PubMed ID: 18643037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pattern Evolution during Double Liquid-Vapor Phase Transitions under Weightlessness.
    Oprisan A; Garrabos Y; Lecoutre C; Beysens D
    Molecules; 2017 Jun; 22(6):. PubMed ID: 28598367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermocapillary convection around gas bubbles: an important natural effect for the enhancement of heat transfer in liquids under microgravity.
    Betz J; Straub J
    Ann N Y Acad Sci; 2002 Oct; 974():220-45. PubMed ID: 12446327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermocapillary convection during subcooled boiling in reduced gravity environments.
    Raj R; Kim J
    Ann N Y Acad Sci; 2009 Apr; 1161():173-81. PubMed ID: 19426315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels.
    Wu C; Xu X; Qian T
    J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of Marangoni convection in liquid films.
    Gambaryan-Roisman T
    Adv Colloid Interface Sci; 2015 Aug; 222():319-31. PubMed ID: 25769473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of droplets of perfectly wetting liquid under the influence of thermocapillary forces.
    Mukhopadhyay S; Murisic N; Behringer RP; Kondic L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046302. PubMed ID: 21599290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circulating Marangoni flows within droplets in smectic films.
    Pikina ES; Shishkin MA; Kolegov KS; Ostrovskii BI; Pikin SA
    Phys Rev E; 2022 Nov; 106(5-2):055105. PubMed ID: 36559366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaporation and Marangoni driven convection in small heated water droplets.
    Girard F; Antoni M; Faure S; Steinchen A
    Langmuir; 2006 Dec; 22(26):11085-91. PubMed ID: 17154588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marangoni Convection in Evaporating Organic Liquid Droplets on a Nonwetting Substrate.
    Chandramohan A; Dash S; Weibel JA; Chen X; Garimella SV
    Langmuir; 2016 May; 32(19):4729-35. PubMed ID: 27119436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Momentum effects in steady nucleate pool boiling during microgravity.
    Merte H
    Ann N Y Acad Sci; 2004 Nov; 1027():196-216. PubMed ID: 15644357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal singularity and droplet motion in one-component fluids on solid substrates with thermal gradients.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061603. PubMed ID: 23005105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic diffusion interactions and coarsening in a system of droplets growing from a supersaturated gas mixture.
    Pines V; Zlatkowski M; Chait A
    J Chem Phys; 2005 Jan; 122(3):34702. PubMed ID: 15740212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic structure factor of density fluctuations from direct imaging very near (both above and below) the critical point of SF(6).
    Oprisan A; Oprisan SA; Bayley B; Hegseth JJ; Garrabos Y; Lecoutre-Chabot C; Beysens D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061501. PubMed ID: 23367952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity.
    Sigalotti LD; Troconis J; Sira E; Peña-Polo F; Klapp J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013021. PubMed ID: 26274283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.